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a b s t r a c t

For more than half a century, experimental studies of various kinds of detection and discrimination
behavior have tended to rely on the simple, two-stage statistical decisionmodel known as signal detection
theory. An apparent weakness of this classical framework is its assumption that making a decision is
equivalent to choosing a decision criterion or boundary to map perceptual or evidence states to a binary
classification response. This static representation leads to several fundamental mispredictions about
qualitative properties of discrimination, each of which is characteristic of a dynamic detection process.
In this article, we show that there is a robust solution to a second class of problems introduced originally
by detection theorists, but later mostly abandoned — the problem of estimating the detectability of the
signal when the decision process is sequential. In an empirical application, a detectability statistic defined
on a crude description of the temporal dynamics of the detection process is shown to be roughly constant
under manipulations of both response preference and response speed. The estimated stringency of the
stopping condition decreased in conjunction with a decrease in signal strength in time, consistent with
the hypothesis that sensory information is retrieved from a decaying memory store. The analysis also
makes it possible to estimate the bivariate distribution of the sensory and non-sensory components of
the response time.

© 2011 Elsevier Inc. All rights reserved.
In their review of the accelerated development of radar
detection systems during the Second World War, Lawson and
Uhlenbeck (1950) defined a model for the transformation of the
effects of electromagnetic radiation on an antenna to an audio
or video image that could be interpreted by a human operator.
The model assumed that the information that is presented on the
display (the output of the receiver) is statistical in nature. That
is, due to random fluctuations in, for example, voltage or current,
the content of the display is a waveform that contains a signal
plus noise. The effect of this stimulus on the perceptual system
of the operator was assumed to be the component frequencies
in the stimulus that fall within the perceptible range, plus some
additional noise causedby randomorganic fluctuation. The chapter
in the text ‘initiated by’ Siegert considered the decision rules that
could be adopted by the operator when there are two possible
events to be discriminated, Signal or Noise.

This formal description of a human–machine decision system
was later developed into a model for human perception by Tanner
and Swets (1954), and came to be known as the theory of signal
detection (or signal detection theory). In this psychophysical
model, the activity on the display was the signal and the decision
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problem was statistical due to noise in the perceptual system.
The representation of the effect of a stimulus as a signal in noise
was not new to psychologists—what was novel in the theory
was the assumption that human observers make sophisticated
statistical decisions, estimating the posterior likelihoods of the
stimuli to be discriminated and then choosing the response that
would minimize a subjective expected loss. This fundamental
statement about the objective of the decision making process
makes it possible to develop a decisionmodel for virtually any type
of discrimination experiment. As the theory evolved, however,
it became increasingly focused on the analysis of two-choice
detection and discrimination tasks (e.g., yes–no detection and two-
alternative forced-choice) in which the stimulus is presented for a
fixed period and the observer’s goal is to maximize the probability
of a correct judgment or an expected payoff defined on the four
possible outcomes of a trial. The signal processing part (i.e., how to
make the observations) of the original detection model was then
mostly forgotten, and the theory became what it is mostly known
as today, i.e., a purely statistical model, in which two distributions
describe the effect of the stimulus presentation on Signal and Noise
trials and a decision rule assigns each possible effect to one of
the two possible detection responses (e.g., Macmillan & Creelman,
2005).

Another early form of the signal detection problem, the sequen-
tial detection model, assumed that collecting data is costly and
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the operatormust decide, after each observation, whether it is best
(per the expected loss) to stop immediately and choose a response
or to continue collectingmore information (e.g., Birdsall & Roberts,
1965; Degroot, 1970; Peterson, Birdsall, & Fox, 1954). Once the ob-
servation process is terminated, a decision rule is applied to the
outcomes of the observations taken in order to select a response.
These types of decision problems do not have simple solutions, and
themodelswhose predictions have beendetermineddonot appear
to be good descriptions of speeded classification behavior (see, e.g.,
Luce, 1986; Townsend & Ashby, 1983, for reviews). As a conse-
quence, this area of statistical decision theory is not often cited in
psychology, despite the increasing emphasis on decision time in
many current paradigms in perception and memory research.

Recently, we have contended that even in the classical yes–no
detection or discrimination task, human observers will adopt a se-
quential decision making strategy (Balakrishnan, 1999; Balakrish-
nan & MacDonald, 2003, 2008; Balakrishnan, MacDonald, & Ko-
hen, 2003). Indirect support for this claim has been available for
a long time. For example, in some of the classical psychophysi-
cal methods, an inverse relationship was observed between re-
sponse time and response confidence and between response time
and the size of the stimulus difference (e.g., Henmon, 1911, John-
son, 1939; see Link, 1992; Pleskac & Busemeyer, 2010 for reviews).
In some of the early yes–no detection experiments, the preferred
(more frequent) response was shown to be both faster and more
likely to be correct than the unpreferred (less frequent) detection
response (e.g., Carterette, Friedman, & Cosmides, 1965; Emmerich,
Gray, Watson, & Tanis, 1972, see Pike, 1973 for a review). Sta-
tistical decision theory predicts, fundamentally, that the decision
maker’s accuracy will increase with the number of observations
taken. Although it is not necessary to equate the sample size with
the decision time, the interdependence of response accuracy, la-
tency, and frequency in detection and discrimination experiments
certainly appearsto favor the sequential detection model over the
fixed-sample model.

More direct support for the sequential model comes from the
relationship betweenpreference and confidence, aboutwhich both
models are explicit in their predictions. LetO be the outcome of the
observations taken (the sensory effect) and let S be the stimulus
type, Signal or Noise. The decision maker’s confidence that a Signal
was presented is directly related to the posterior likelihood ratio,

l =
P(O|S = Signal)
P(O|S = Noise)

.

In the fixed-sample model, the decision maker will respond yes
(no) if l is greater than (less than) a criterion, β , which is the
measure (or definition) of the decision maker’s bias. The optimal
value of the criterion depends on the ratio of the prior probabilities
of the two stimuli, while the distributions of l on Signal and Noise
trials are independent of β .

Analysis of the likelihood ratios corresponding to observers’
different degrees of confidence in the accuracy of their detection
responses suggest exactly the opposite relationship: the distribu-
tions of l change under different prior probability conditions, but
the criterion value β is always equal or close to one (Balakrishnan,
1998, 1999; Balakrishnan & MacDonald, 2003, 2008; Van Zandt,
2000). The effect of the prior probabilities on the distribution of l is
predicted by the sequential detection model, because the distribu-
tion of l will depend on the observer’s stopping rule as well as the
stimuli to be discriminated, and the stopping rule will depend on
the prior probabilities. The bias in the stopping rule is such that al-
ways adopting the unbiased terminal decision rule, even when the
prior probabilities are unequal, will have almost no consequence
for overall accuracy.

With these specific reasons for rejecting the classical signal
detection model in mind, we return in this article to Lawson
and Uhlenbeck (1950)’s original threshold signals problem and
develop a method of estimating the parameters of a dynamic
detection process. From the information contained in the response
times, response confidence, and the yes-or-no detection response,
we show how it is possible to obtain a rough description (i.e.,
with a crude response time scale) of the temporal evolution the
sensory effect of the stimulus and the logic of the observer’s
stopping condition. The analysis allows us to define a statistic
that remains roughly constant under manipulations of both
response preference and speed pressure, and also to estimate the
bivariate distribution of sensory and non-sensory components of
the observable response time.

We begin by assuming that after a transformation of the obser-
ver’s confidence rating, C , to a likelihood ratio, P(C = c|S =

Signal)/P(C = c|S = Noise), we obtain an estimate of the terminal
state of a randomwalk,where the state of thewalk at each time, k is
the likelihood ratio defined by the sensory effect of the stimulus up
to k. Most of the first part of the article (Sections 2 and 3) is devoted
to this assumption and its justification. From this terminal state
and the response time, the problem is to estimate the parameters
of thewalk, and from this temporal description, ameasure of signal
detectability.

1. Basic principles of detection theory

In the static, or fixed-sample, form of the threshold signals
problem, a device attached to a sensor (e.g., a receiver) records
the sensor’s output during a specific, well-defined interval, during
which one of two types of stimuli is present, Signal or Noise. Due
to some transient effects in the environment or in the sensor
itself, the sensory effect, ψ , will rarely or never uniquely identify
the stimulus. However, it will almost always alter the relative
likelihoods of the two stimuli, increasing one at the expense of
the other. The sensory effect is passed on to a decision maker,
who assigns (or ‘maps’) it to one of two responses, yes or no. The
observer’s detection response, yes or no, is the terminal decision—
i.e., the decision that completes the trial.

This overt response is understood to be a gamble, with the
chance of winning determined by the sensory effect of the
stimulus, ψ , the prior probabilities of the stimuli, pSignal and pNoise,
and the response that is selected, R. By choosing one of the two
responses, yes or no, the observer chooses between one of two
gambles, with the chance of winning being

ϕSignal,ψ = P(S = Signal|ψ)

if the observer responds yes, and

ϕNoise,ψ = P(S = Noise|ψ) = 1 − ϕSignal,ψ

if the observer responds no. Notice that ϕSignal,ψ and ϕNoise,ψ are
random variables whose values are probabilities.1 For our pur-
poses, there is no reason to consider objectives other than maxi-
mizing the probability of a correct judgment on a given trial. We
will therefore refer to ϕSignal,ψ and ϕNoise,ψ as the risks that the ob-
server is facing during the experiment.

In order to have the best chances of winning the bet, the
observer must choose the safer (less risky) gamble, which is the
larger of ϕSignal,ψ and ϕNoise,ψ . The decision rule is suboptimal (for
accuracy) if, with non-zero probability, the observer will choose
the response that does not correspond to the maximum of ϕSignal,ψ
and ϕNoise,ψ , that is, if

P(R = yes|ϕSignal,ψ < ϕNoise,ψ ) > 0,

1 Here and elsewhere, the variables being defined are random variables if any
randomvariable in the definition is free (i.e., is not bound by a quantifier or assigned
a specific value).
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or

P(R = no|ϕNoise,ψ < ϕSignal,ψ ) > 0.

In such a case, the probability of a correct responsewill be less than
it would have been if the optimal decision rule was adopted.

When the prior probabilities of the stimuli are equal, choosing
the maximum of ϕSignal,ψ and ϕNoise,ψ is equivalent to responding
yes whenever the conditional probability of the effect ψ on Signal
trials is greater than the conditional probability of this effect on
Noise trials,

P(ψ |S = Signal) > P(ψ |S = Noise),

and responding nowhenever this inequality is reversed,

P(ψ |S = Noise) > P(ψ |S = Signal).

This strategy is called the unbiased decision rule in detection theory.
The expected percent correct of the optimal decision maker

increases as the difference in the prior probabilities of the stimuli
increases. To quantify the amount of sensory noise, therefore,
we will define the detectability of the signal in the fixed-sample
detection problem as the probability of a correct response when
the decision rule is optimal and the prior probabilities are equal.

2. Implications of the order of transformations in the threshold
signals model

In order to determine whether the observer’s decision rule
is suboptimal, the classical signal detection analysis introduces
some assumptions about the distributions of the sensory effect ψ
on Signal and Noise trials (e.g., that they are univariate normal)
and about the complexity of the decision rule (e.g., that a single,
fixed criterion separates the sensory effects into yes and no
responses). One reason for choosing a parametric model was,
presumably, the fact that the sensory effect of the stimulus is not
an observable quantity. It is worth noting, however, that the same
limitation applies to Lawson and Uhlenbeck (1950)’s threshold
signals problem, but this is not the reason why they developed
parametric models to describe the output of the sensor and
receiver. In the engineeringmodel, the effect of the stimulus on the
sensor (e.g., some representation of the effect of electromagnetic
radiation on an antenna) and the output of the sensor (e.g., voltages
or currents) are not the same waveforms. The output of the sensor
(or receiver) can be understood as a measure, ψm, that is taken
on the effect of the stimulus on the sensor, ψ (or the effect of the
sensor on the receiver). Although the transformations are designed
to communicate the most pertinent information in the behavior of
the sensor, there is always the possibility – due to noise of various
kinds – that ψ will contain at least some information about the
stimulus that is not contained in the final signal (e.g., a video or
audio display) that is communicated to the decision maker.

Since there is no way to determine ψ from ψm, it is impossible
to determine, from observations ofψm, the extent of the difference
in the amount of information afforded by the two measures.
However, it is also important to remember that the representations
ψ and ψm are not merely two unrelated random processes: ψ is
the effect of the stimulus on the sensor, and ψm is the result of a
conversion applied to the sensor output. The output ψm may be
a more suitable type of representation for the decision maker to
operate on (e.g., a signal in a human observer’s perceptible range),
but even so, ψm is assumed to be further ‘downstream’ from the
stimulus, and hence it would not contain any information about
the stimulus that is not also contained in ψ—it could only lose
information. Under this assumption, the risks faced by a decision
maker when both ψ and ψm are available pieces of information
depends only on ψ ,

P(S = Signal|ψ = y, ψm = x) = P(S = Signal|ψ = y),
and

P(S = Noise|ψ = y, ψm = x) = P(S = Noise|ψ = y),

for each y and x. In other words, ψm and S are conditionally
independent givenψ , and the optimal decision rule is defined only
on ψ . Stated in terms of the likelihood ratio,

P(ψ = y, ψm = x|S = Signal)
P(ψ = y, ψm = x|S = Noise)

=
P(ψ = y|S = Signal)
P(ψ = y|S = Noise)

,

for each y and x. Ultimately, this simple consequence of the flow
of information in the threshold signals model – which we will re-
fer to henceforth as the downstream constraint2 –makes it possible
to draw certain inferences about the information in ψ in a behav-
ioral study from the information contained in an experimentally
observable measure, ψm.

3. Sufficient conditions for suboptimal and biased decision
rules

Many behavioralmeasureswould be, likeψm in the engineering
problem, downstream from the sensory effect of the stimulus.
Any information about the stimulus that is contained in the
observablemeasureψm must therefore also be contained inψ . The
problem is therefore to understand how the risks associated with
the unobservable values of ψ are related to the risks associated
with the observable values of ψm. It is obviously impossible to
fully resolve this black box problem by any purely statistical
analysis ofψm. However, certain properties ofψm will place certain
constraints on ψ . First, note that by the law of alternatives,

P(S = Signal|X = x)

=

−
y

P(S = Signal|X = x, Y = y)P(Y = y|X = x), (1)

where the sum is taken over all possible values of Y . Because−
y

P(Y = y|X = x) = 1,

the amount of risk associated with the yes response when the
decision maker knows that X = x but does not know the value
of Y is a weighted average over the risks associated with the yes
response when X = x and Y = y, with the weights assigned
to these risks being P(Y = y|X = x). This probability law will
be crucial to our analysis of, and our solution to, the sequential
detection problem.

The terms being averaged over in (1) – that is, P(S = Signal|X =

x, Y = y) for different values of y – need not have any interesting
behavioral interpretation in order for the law of alternatives to
apply. However, when X is the observable measure taken on the
sensor, ψm, and Y is the true output of the sensor, ψ , then the
downstream constraint applies, and the risk associated with the
observable value ψm, P(S = Signal|ψm = x), is entirely due to the
effect ψ ,

P(S = Signal|ψm = x)

=

−
y

P(S = Signal|ψ = y, ψm = x)P(ψ = y|ψm = x)

=

−
y

P(S = Signal|ψ = y)P(ψ = y|ψm = x).

This means that when the downstream constraint is satisfied, the
conditional probability that the experimenter can estimate, P(S =

2 There may be a better term. We did not find any explicit statement of this
assumption in the early detection theory papers.
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Signal|ψm = x), must be a weighted average over the values that
ϕSignal,ψ can assume (i.e., the risks) when ψm = x, with the weight
associatedwith a given risk being the relative frequency of this risk
when ψm = x.

Because of this special relationship between the risks associ-
ated with observable and unobservable measures when the down-
stream constraint is satisfied, the single most important question
about the decision making strategy that classical detection theory
poses – is the observer’s decision rule biased or suboptimalwith re-
spect to ψ? – can sometimes be answered unequivocally, despite
the fact that ψ is never itself observable. Suppose that on the tri-
als when the dependent measure ψm is equal to x, the participant
will respond yes with some non-zero probability. Then the value
P(S = Signal|R = yes, ψm = x) is a weighted average over the
values of the risks that are incurred by the observer when R = yes
and ψm = x. If the observer’s decision rule is optimal (for accu-
racy), then none of these unobservable risk values is less than 1/2,
and it is impossible for the weighted average of these values to be
less than 1/2.

To establish that an observer makes suboptimal decisions for at
least some values of ψ , therefore, it is sufficient to show that

P(S = Signal|R = yes, ψm = x) <
1
2
, (2a)

or

P(S = Noise|R = no, ψm = x) <
1
2
, (2b)

for some value x.
The derivation of the corresponding sufficient condition for

bias in the observer’s decision rule is less intuitive, but will turn
out to be more important in our analysis of sequential detection
processes below. First, define the random variable whose value is
the likelihood ratio,

lψ =
P(ψ |S = Signal)
P(ψ |S = Noise)

,

and let

lψ (y) =
P(ψ = y|S = Signal)
P(ψ = y|S = Noise)

,

be the value of the likelihood ratio when ψ = y.
Now define the likelihood ratio for a given value of the joint

dependent measure, {ψm, R},

Bψm,R(x, w)

=
P(ψm = x, R = w|S = Signal)
P(ψm = x, R = w|S = Noise)

=

∑
P(ψm = x, R = w|ψ = y, S = Signal)P(ψ = y|S = Signal)∑
P(ψm = x, R = w|ψ = y, S = Noise)P(ψ = y|S = Noise)

,

wherew is yes or no, and P(ψm = x, R = w) > 0. Applying Bayes’
rule and the downstream constraint,

P(ψm = x, R = w|ψ = y, S = X)

=
P(S = X |ψ = y, ψm = x, R = w)P(ψm = x, R = w|ψ = y)

P(S = X |ψ = y)
,

= P(ψm = x, R = w|ψ = y),

where here and elsewhere, X is the stimulus type, Signal or Noise.
Therefore, Bψm,R(x, w) can be expressed as

Bψm,R(x, w)

=

∑
y
P(ψm = x, R = w|ψ = y)P(ψ = y|S = Signal)∑

y
P(ψm = x, R = w|ψ = y)P(ψ = y|S = Noise)

. (3)
The likelihood ratio, Bψm,R(x, w), is therefore a weighted combi-
nation of the numerators of the unobservable likelihood ratios,
lψ (y), that have non-zero probability when the event observed is
{ψm = x, R = w} divided by a weighted combination of the de-
nominators of these same unobservable ratios. The weighting is
such that the contribution of a given likelihood ratio, lψ (y) = v, to
the average depends on the consistency with which the likelihood
ratio v is assigned to (co-occurs with) the event {ψm = x, R = w}

and on the relative frequency of v, P(lψ = v).
If the decision rule is unbiased, the observer’s response is

always R = yes when the numerator of the likelihood ratio is
greater than the denominator, and R = no when the numerator
is less than the denominator. A sufficient condition for bias in the
decision rule is therefore

Bψm,R(x, yes) =
P(ψm = x, R = yes|S = Signal)
P(ψm = x, R = yes|S = Noise)

< 1, (3a)

or

Bψm,R(x, no) =
P(ψm = x, R = no|S = Signal)
P(ψm = x, R = no|S = Noise)

> 1, (3b)

for some value x.
Comments.

The conditions for suboptimality and bias of the decision rule
are sufficient under only one behavioral assumption, i.e., that
ψm satisfies the downstream constraint. It is also important to
recognize, however, that these sufficient conditions are not also
necessary: Even if the measure ψm satisfies the downstream
constraint and the conditions for bias or suboptimality are not
satisfied, this would not establish that the decision rule is
unbiased or optimal with respect to ψ . The biased or suboptimal
components in the weighted averaging processes might simply be
averaged out in the sum. Whether or not the bias or suboptimality
of the observer’s decision rule can be detected when it exists will
depend on the covariance of ψm and ψ .

The empirical problem is therefore to find dependent mea-
sures that are more predictive of the stimulus than the yes–no de-
tection response alone (and satisfy the downstream constraint).
Confidence ratings turn out to be a convenient example of a
strongly predictive measure, enough so that both the suboptimal-
ity and bias conditions are satisfied. However, they are satisfied in
the situations predicted by sequential detection theory rather than
by the static signal detection models (Balakrishnan & MacDonald,
2008).

4. Estimating the parameters of a sequential detection process

In the sequential detection problem, a cost on the total number
of observations taken is added to the cost of the decision outcome.
The decision maker continues to take observations until the
expected payoff if either the yes or the no response is immediately
rendered is higher than the expected payoff if at least one
more observation is obtained. The sequential detection model
is therefore a series of distinct detection models, each with a
potentially different set of sensory and decision parameters, and
each with a third possible decision, ‘continue observing’. At each
possible stopping time k, there is a new sensory observation,
ψk, and a stopping condition, θk. The stopping condition is a
pair of probabilities or likelihood ratios, byes(k) and bno(k), which
represent the minimum strength of evidence in favor of the Signal
(Noise) stimulus at time k that would cause the expected return
if the yes (no) response is selected at time k to be larger than the
expected return if at least one more observation is taken before a
decision is made.

As a model for human behavior, the optimal stopping condition
at time k in the sequential detection problem depends on the
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observer’s subjective cost function as well as the sensory effects
of the stimulus. The pair of probabilities that define the optimal
stopping condition at k may therefore depend on k and could also
vary from trial to trial. Irrespective of how this cost function is
defined, however, on each trial there must be a stopping time,
kT , and a sensory effect of the stimulus, Ψ (kT ) = {ψ1, . . . , ψkT }.
A decision rule maps each possible sensory effect to a yes-or-no
detection response, and this rulewill be optimal or suboptimal and
biased or unbiased with respect to the sensory effect Ψ (kT ) in the
exact same sense as the decision rule in the fixed-sample detection
model.

Under the experimenter’s instruction in the classical yes–no
detection task (to be as accurate as possible), kT should be the
maximum number of observations that are possible, kmax, in the
time that is allowed for a response, but according to our thesis,
the observer’s imposition of a speed incentive causes the observer
to sometimes terminate the sensory observation process at some
time prior to the maximum.3 The problem is to estimate, from
the behavior in a given yes–no detection experiment (e.g., with
unequal priors) the detectability of the signal (probability correct)
when the prior probabilities are equal and both the decision rule
and the stopping rule are optimal (for accuracy).

This is not a simple problem—it is obviously impossible to re-
cover the parameters of eachmember of a series of detectionmod-
els from the relative frequencies of the yes-or-no responses alone.
Assuming, however, that in addition to the detection response, the
experimenter also records the observer’s response time and re-
sponse confidence, it becomes possible not only to estimate the de-
tectability of the signal in a robust fashion, but also to partition the
response time distribution into its sensory and non-sensory com-
ponents. In fact, in order to estimate the parameters of the sequen-
tial detection process, this classical ‘mental chronometry’ problem
(Ashby & Townsend, 1980; Donders, 1969; Dzhafarov, 1992; Kolev,
Falkenstein, & Yordanova, 2006) must also be resolved.

Estimating the detectability of a signal from the overt behavior
of a sequential decisionmaker is orders ofmagnitudemore difficult
than the analysis of a fixed-sample detection process. To make
the development more manageable, our solution is presented in
three phases. In the first phase, we assume that the number of
observations taken on a given trial (kT ) is known (i.e., that RT = kT )
and that the decision maker’s stopping condition at each possible
stopping time k is the same on each trial. This makes it easier to
highlight themost important step in the analysis, aswell as the key
assumptions that are involved in the estimation procedure. In the
second phase, we drop the assumption that the stopping condition
at each possible stopping time k is constant across trials, and in the
third and final phase, we add a post-stopping time component to
the observable RT .

4.1. Recovering the terminal state from the observable response

Suppose that the dependent measure ψm is a confidence rat-
ing which is executed at the same time as the yes-or-no response
(e.g., the responses are given on a bipolar rating scale with an ex-
plicit yes–no response cutoff in the middle). The downstream con-
straint should be satisfied for such a measure, and the time to re-
spond is the time needed to select and execute the detection re-
sponse. The sensory effect Ψ (kT ) in the sequential model can be

3 Of course, if the conditional probability of the Signal at k < kmax reaches
the value 1 or 0, the observer can comply with the accuracy instructions without
waiting until kmax to respond. However, this possibility alone would not explain
the speed–accuracy trade-off or the effect of response preference on response
confidence.
substituted for the sensory effectψ in the definitions and tests de-
veloped above for the fixed-sample model. That is, the sufficient
conditions for suboptimality and bias of the fixed-sample decision
process are sufficient conditions for suboptimality and bias of the
sequential decision maker’s terminal decision rule. However, be-
cause kT is sometimes less than kmax, the probability correct when
an optimal terminal decision rule is applied to Ψ (kT ) (and the pri-
ors are equal) underestimates the true detectability of the signal.

The first step in developing a measure to control for the effect
of a suboptimal stopping rule on performance is to consider the
random variable that defines the unobservable sensory evidence
state,

LkT=k(k) =
P(ψ1, . . . , ψk|S = Signal, kT = k)
P(ψ1, . . . , ψk|S = Noise, kT = k)

,

and its relationship to the observable random variable,

Bψm,R =
P(ψm, R|S = Signal)
P(ψm, R|S = Noise)

.

From Eq. (3), it follows that the average value of the terminal
evidence state, LkT=k(k), when Bψm,R = w and kT = k is the value
w, where the averaging is of the type defined in the equation. It is at
least possible, therefore, that the observable measure Bψm,R could
be an effective estimate of LkT=k(k), where ‘effective’means that by
assuming that the values of Bψm,R and LkT=k(k) are the sameon each
trial, we will be able to define a set of measures that identify the
basic dynamics of the detection process and distinguish decisional
from sensory variables in discrimination experiments.

The information contained in the sensory dynamics of the
detection process is determined by the distributions of the
likelihood ratio,

lS=X (k) =
P(ψS=X,k|ψS=X,1, . . . , ψS=X,k−1, S = Signal, kT ≥ k)
P(ψS=X,k|ψS=X,1, . . . , ψS=X,k−1, S = Noise, kT ≥ k)

,

for each stimulus type X and each time k. Assuming that Bψm,R =

LkT=k(k), therefore, the problem is to recover these likelihood ratio
distributions from the distributions of LkT=k(k) at each time k.
Although the distribution of LkT=k(k) for a given stopping time k
should depend on the sensory effect at each time k ≤ kT , the
value of LkT=k(k) is only observed (by way of Bψm,R) on a given trial
because the sensory effect sequence, Ψ (k), satisfied the observer’s
stopping condition at some unknown time kT ≤ RT . The difference
between the observable RT and the unobservable stopping time kT ,

D = RT − kT ,

is the time it takes to select and execute the response {ψm, R}. For
now, we will ignore this non-sensory part of the total response
time and assume that P(D = 0) = 1.

4.2. The prior and posterior state distributions

If the decision maker chooses to take another observation at
time k, the strength of the sensory evidence will change from its
value at k − 1,

LS=X,kT≥k(k − 1) =
P(ψS=X,1, . . . , ψS=X,k−1|S = Signal, kT ≥ k)
P(ψS=X,1, . . . , ψS=X,k−1|S = Noise, kT ≥ k)

to its new value at k,

LS=X,kT≥k(k) =
P(ψS=X,1, . . . , ψS=X,k|S = Signal, kT ≥ k)
P(ψS=X,1, . . . , ψS=X,k|S = Noise, kT ≥ k)

.

The difference between these two evidence states is multiplication
by the likelihood ratio of the sensory effect at k,

LS=X,kT≥k(k) =
P(ψS=X,1, . . . , ψS=X,k−1|S = Signal, kT ≥ k)
P(ψS=X,1, . . . , ψS=X,k−1|S = Noise, kT ≥ k)
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×
P(ψS=X,k|ψS=X,1, . . . , ψS=X,k−1, S = Signal, kT ≥ k)
P(ψS=X,k|ψS=X,1, . . . , ψS=X,k−1, S = Noise, kT ≥ k)

= LS=X,kT≥k(k − 1)

×
P(ψS=X,k|ψS=X,1, . . . , ψS=X,k−1, S = Signal, kT ≥ k)
P(ψS=X,k|ψS=X,1, . . . , ψS=X,k−1, S = Noise, kT ≥ k)

.

Themost important step in the analysis, therefore, is to develop
a method to estimate, from the distributions of the random
variables LS=X,kT=k(k) at each stopping time k, the distributions
of LS=x,kT≥k(k − 1) and LS=X,kT≥k(k) for each X and k. Since
LS=x,kT≥k(k − 1) is the evidence state before the observation
at time k and LS=X,kT≥k(k) is the evidence state after this new
observation, we will refer to these two distributions as the prior
and posterior state distributions, respectively, for the observation
time k. At this point it is also convenient to convert the prior
and posterior states to their log transformations, log LS=X,kT≥k(k −

1) and log LS=X,kT≥k(k), so that in our examples and figures, two
evidence states z and −z denote equal evidence strength in
opposing directions.

4.3. Estimating the posterior state distribution

Suppose that the observation process terminates when the log
likelihood ratio,

log L(k) = log
[
P(ψ1, . . . , ψk|S = Signal)
P(ψ1, . . . , ψk|S = Noise)

]
,

first exceeds one of two boundaries, byes (k) or bno (k), for
the first time, where byes (k) > bno (k) for each k. Suppose
further that these boundary values may depend on k but are
constant across trials. Under these conditions, the set of observable
terminal evidence states that share the same stopping time k
are either greater than byes(k) or less than bno(k), due to the
stopping condition. Thus, they are random samples from the left
and right tails of a single distribution, that is, the distribution
of log LS=X,kT≥k(k). The problem is therefore to estimate the
‘complete’ posterior state distribution, P


log LS=X,kT≥k(k) = x


,

from observations taken from its left and right tails.
This key insight is demonstrated in the upper panel of Fig. 1,

which shows several possible trajectories of a process that
would produce a response at time k = 7 or later, when the
stopping condition depends on k (the boundaries converge in
time) but is constant across trials. When the observer responds
yes at time k = 7, the observed value of log LS=X,kT=k(k)
is an observation from the right tail of the log LS=X,kT≥7 (7)
distribution, and when the observer responds no, the observed
value log LX,kT=k(k) is an observation from the left tail of the
log LS=X,kT≥7(7) distribution. When the observer responds at some
time later than k = 7, the state of the process at time
7, log LS=X,kT≥7 (7), was some unobserved value in the middle
section of the log LS=X,kT≥7 (7) distribution. The size of the middle
section is determined by the difference between the two stopping
boundaries, byes (k)− bno (k), at time k = 7.

Fig. 2 illustrates the interpolation problem that the experi-
menter faces when the distribution of the terminal evidence state,
log LS=X,kT=k(k), must be estimated froma finite sample. The distri-
bution shown in the figure is the result of simulating 10000 Signal
trials of a relatively simple sequential detectionmodel and record-
ing the evidence state when the process terminated at time k = 3.
The boundaries were constant in time, byes (k) = −bno (k) = 0.5,
and the sensory effects distributions at each k were normal with
µSignal (k)−µNoise (k) = 1 and σ 2

Signal(k) = σ 2
Noise(k) = 1. The total

area of the missing piece (denoted by the dashed rectangle) is de-
termined by the frequency with which kT > 3, making it not too
difficult to approximate, with reasonable accuracy, the two stop-
ping boundaries and the shape of the distribution between them.
Fig. 1. Upper panel: Four possible sample paths of a sequential detection process
that terminates at time 7 or greater. Lower panel: the evidence state at time 7 is an
observable value in the left or right tail of a distribution when the response occurs
at time 7, and an unobservable value in the middle of the distribution when the
response time is any value greater than 7.

Fig. 2. An example of an interpolation problem when the stopping condition
is invariant across trials. The middle portion of the underlying evidence state
distribution at time k = 3 conditioned on kT ≥ 3 must be guessed from the
shapes of the tails and the size of the rectangle, which is determined by the relative
frequency with which the responses are given at some time later than kT = 3.

4.4. Determining the prior state distribution

Once an interpolation procedure is developed to find the dis-
tribution of log LS=X,kT≥k(k) for each k, the prior state distributions
can be obtained by a simple transformation, with the interpolated
middle portion of the posterior distribution for stopping time k
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becoming, after multiplication by a constant, the prior state distri-
bution for observation k+1. That is, the distribution of the evidence
state at k conditioned on kT ≥ k + 1 – i.e., the prior state distribu-
tion for observation time k+1 – is the distribution of the posterior
state for observation k, conditioned on this posterior state being in
the interval [bno (k), byes (k)],

P

log LS=X,kT≥k+1(k) = z


= P


log LS=X,kT≥k(k) = z| log LS=X,kT≥k(k) ∈ [bno(k), byes(k)]


,

for values of z in the interval [bno (k), byes (k)]. Since the probability
that log LS=X,kT≥k(k) is in [bno (k), byes (k)] is the probability that
the process does not terminate at k, given that it has not terminated
yet, P(kT > k|kT ≥ k, S = X), the interpolated middle portion of
the posterior state distribution for observation time k is

P

log LS=X,kT≥k+1(k) = z


=

P

log LS=X,kT≥k(k) = z


P(kT > k|kT ≥ k, S = X)

,

for values of z in [bno (k), byes (k)].

4.5. Distributional assumptions

Assuming that the sensory observations at time k do not depend
on the observations prior to k, the distribution of the log likelihood
ratio, log lS=X (k), could be recovered from the prior and posterior
state distributions by deconvolution (e.g., Sheu & Ratcliff, 1995 and
Smith, 1990). Instead of combining an interpolation method with
a deconvolution procedure, however, we chose to simply assume
that the posterior state distribution is normal at each k. This makes
it possible to estimate the parameters of the detection process
using maximum likelihood.

Under this distributional assumption, the sequential detection
model has 6 parameters for each stopping time k < kmax:
the mean and variance of log LS=X,kT≥k(k) for each stimulus type
X , and the two stopping boundaries byes (k) and bno (k). At
kmax, the sensory observation process must terminate and the
two stopping boundaries must therefore converge on a single
‘detection criterion’, as in the classical detection model. In order
to reduce the size of the problem, we introduced one more
assumption about the sensory effects of the stimuli, namely, that
they are also univariate normal. This eliminates two of the four
sensory parameters at each observation time k (due to implicit
assumption of the transformation of the sensory effect to a log
likelihood ratio in the definition of the stopping condition, the
mean and variance of the distribution of ψk on Noise trials can be
set to 0 and 1, respectively).

4.6. Comparing two sequential detection processes

A necessary condition for two experimental conditions to be
equivalent with respect to the sensory effects of the stimuli is
equivalence with respect to the distributions of the log likelihood
ratios, log lS=X (k), at each observation time k. In practice, it is
unlikely that these distributions could be estimated with enough
accuracy to apply such a strict comparison effectively. Somewhat
more feasible would be a weaker condition on the detectability of
the signal for each sensory effect k. That is, define the probability
correct under an optimal decision rule and equal priors,

ωk =
1
2
P(log lS=Signal(k) > 0)+

1
2
P(log lS=Noise(k) < 0),

and compare the values ofωk in the two conditions.4 Since this test
is also likely to require a relatively large experiment, the measure

4 Note that we are assuming here that log lS=X (k) = 0 has zero probability.
that we will adopt here is the detectability of the signal when the
priors are equal and the information available is the entire effect
sequence {ψ1, . . . , ψkmax}. That is, define

log lS=X (1, . . . , kmax) = log
[
P(ψS=X,1, . . . , ψS=X,kmax |S = Signal)
P(ψS=X,1, . . . , ψS=X,kmax |S = Noise)

]
,

and then compare

Ω =
1
2
P(log lS=Signal(1, . . . , kmax) > 0)

+
1
2
P(log lS=Noise(1, . . . , kmax) < 0),

for the two conditions.

4.7. Phase two: stochastic stopping rules

The dependence between a human observer’s speed and confi-
dence in a perception experiment may be relatively strong, but is
never perfect. In many cases, the lowest confidence yes and no re-
sponses will each have non-zero probability at each stopping time.
This means that with a sufficiently large sample, the lowest value
of log B

ψm,R
(x, yes) and the highest value of log B

ψm,R
(x, no)will be

observed at each k. In order for the likelihood of the data under
the model defined above to be non-zero, therefore, the stopping
boundaries, byes (k) and bno (k), at each time k must be the min-
imum of log Bψm,R=yes and the maximum of log Bψm,R=no, respec-
tively, which would mean that they are constant in k, and close to
zero.

At least from the statistical decision theory point of view, the
simplest explanation for the strong but imperfect relationship
between confidence and response time is that the observers’
stopping condition at time k varies across trials, which would
happen if the observers’ speed incentives can change across trials
or if there is some random error in their subjective estimates
of the strength of the sensory evidence as it develops during a
trial. A similar hypothesis is often put forward by proponents
of classical detection theory in order to account for some well-
known violations of the static detection model’s assumptions,
such as the effects of prior outcomes on the supposed placement
of the detection criterion (e.g., Benjamin, Diaz, & Wee, 2009,
Durlach & Braida, 1969, Ell, Ing, & Maddox, 2009, Healy & Kubovy,
1981, Kubovy, 1977, Mueller &Weidemann, 2008, Nosofsky, 1983,
Treisman &Williams, 1984 and Vogels & Orban, 1986).

The effect of adding noise to the stopping boundaries on the
interpolation problem is illustrated in Fig. 3, using σ 2

byes(k) =

σ 2
bno(k) = 0.25 in the model defined above. The noise was normal

but truncated so that byes (k) ≥ 0 and bno (k) ≤ 0. Visually,
guessing the (average) boundaries and filling in the gap is more
difficult, despite the fact that the probability that the state falls
between the two boundaries (the probability that kT > 3) can
be estimated. However, since we are already assuming that the
evidence states, log LS=Signal,kT≥k(k) and log LS=Noise,kT≥k(k), have
normal distributions at each stopping time k, adding noise to the
boundaries does not change the parameter estimation problem
in any substantial way. To allow for the possibility of stochastic
stopping rules, we assumed that the two boundaries at each k
have independent normal distributions, with this noise truncated
so that the yes response boundary is positive and the no response
boundary is negative.

4.8. Phase three: The non-sensory component of the response time

Once the observation process is terminated, the decisionmaker
must still select and execute a terminal response, which in our
paradigm is a simultaneous yes-or-no judgment and confidence
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Fig. 3. The interpolation problem when noise is added to the two stopping
boundary values that define the stopping condition at time k. The boundary noise
‘blurs’ the edges of the gap, making it more difficult to fill in the gap and thereby
estimate the distribution of the sensory evidence state.

rating. Unless this extra time component is a constant, it is
impossible to determine the length of the delay, D, between the
stopping time and the response time, RT , making it impossible
to estimate the stopping time, kT . This would seem to rule out
any empirically feasible method of estimating the distributions of
log LS=X,kT≥k(k) for any given stopping time k. However, this initial
impression turns out to be overly pessimistic.

In a discrete time model with a maximum RT , the sensory and
non-sensory components of the observable decision time have a
finite number of possible integer values. Let kmax be, as before, the
maximum possible stopping time, and let dmax be the maximum
possible delay, D ≤ dmax. For now, the units of kmax and dmax are
determined by the sampling rate of the experimenter’s RT timing
device, e.g., if the RT is recorded in ms, then kmax and dmax are in
ms. The sum, kmax + dmax, is the maximum possible RT that the
experimenter will allow.

When the stopping time, kT , is equal to a given value k on a
given trial, the observed terminal evidence state, log LS=X,kT=k(k),
will have the value RT = k+D assigned to it,whereD is the amount
of delay required to select and execute the response on the given
trial. The distribution of log BS=X,R,ψm conditioned on a given RT
is therefore a mixture of the tails from different distributions, with
the relative proportion of a given distribution, P(log LS=X,kT=k(k) =

z), in the mixture when RT = i being the relative frequency with
which the stopping time is k when the RT is i, P(kT = k | RT =

i, S = X).
The amount of mixing in the distribution of evidence states

when RT = i will depend on the number of combinations
of stopping and delay times that add to i, and will therefore
increase as the RT increases. Unless themaximumpossible delay is
relatively small, the size of the problem will increase very quickly.
For example, with kmax = 5 and RTmax = 6, there are already
13 additional parameters per stimulus. Fortunately, however, the
total number ofmixture parameters is considerably larger than the
number that would need to be estimated, due to three separate
factors:

• To the extent that the selection and execution time is under
the observer’s control, it should be subject to the same speed
pressure that is presumed to cause the observer to terminate
the sensory observation process prior to kmax on some trials,
despite the instruction to maximize accuracy. Therefore, it is
reasonable to assume that any variation in the delay would
be due to random fluctuations of some kind, as opposed to
some deliberate (and hence irrational) strategy. In such a
Table 1
The delay time mixture parameters that can be eliminated due to one of three
factors, for the case kmax = 4 and RTmax = 8. The weight in a cell is wk,i = P(kT =

k | RT = i, S = X). Factor 1 (F1): each delay has non-zero probability at each
stopping time; Factor 2 (F2): For a given stopping time k,

∑
i wk,iP(RT = i | S =

X) = P(kT = k | S = X), and P(kT = k | S = X) is determined by the parameters
of the sensory observation process; Factor 3 (F3): For a given RT = i,

∑
k wk,i = 1.

RT
2 3 4 5 6 7 8

k

1 w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7
F3 F2 F1 F1 F1

2 w2,1 w2,2 w2,3 w2,4 w2,5 w2,6
F3 F2 F1 F1

3 w3,1 w3,2 w3,3 w3,4 w3,5
F3 F2 F1

4 w4,1 w4,2 w4,3 w4,4
F3 F3 F3 F3

case, any amount of delay that has non-zero probability when
the stopping time is k should also have non-zero probability
when the stopping time is any other possible value j. Under
this assumption, the maximum RT must be the maximum
stopping time plus the maximum delay, kmax + dmax. Several
combinations can therefore be eliminated.

• The weights that define the relative proportions in a given
mixture (i.e., for a given RT ) must add to one. Forcing the
predicted frequencies in each cell of a column to add to the
observed total (the frequency of the given RT ) eliminates one
mixture parameter from each column.

• For each possible stopping time, the delay time D must be one
of dmax possible values. The last mixture parameter in each
row (i.e., for each stopping time k) is therefore completely
constrained by the predicted frequency of the stopping time.

The effect of these three factors on the total number of param-
eters is illustrated in Table 1, for the case in which kmax = 4 and
the maximum RT is 8. The notation in the lower right-hand cor-
ners of the cells in the table (F1, F2, F3) indicate which parame-
ters can be eliminated and for which reason. Once the impossible
cells and the degrees of freedom are taken into account, the size of
the problem is reduced substantially. For example, when kmax = 2
and dmax = 2, there are no mixture parameters at all, and in the
Table 1 example, the 22 total possible parameters are reduced to
only 6 that would need to be estimated for a given stimulus.

Of course, even after the number of mixture parameters is
reduced to a minimum, kmax and dmax cannot be in thousandths
or even tenths of a second, and it would be absurd to propose that
there might be only about three or four possible stopping times
and three or four possible delays in a real experiment. It is not at
all absurd, however, to suspect that reducing a relatively accurate
measure of time to a relatively crude one merely produces a
relatively crude picture of the dynamics of the detection process—
and even this crude description turns out to be sufficient to
produce a measure that controls for the effects of the stopping
condition on an observer’s overt performance.

5. Empirical application

In order to apply the sequential analysis, the experimentermust
solicit a confidence rating and a yes–no detection response, and
also record the response time. Ideally, the rating and detection
responses should be executed simultaneously, so that the down-
stream constraint is likely to be justified. A numerosity discrimi-
nation experiment reported recently by Mueller and Weidemann
(2008) satisfied all of these conditions, and also included three dif-
ferent prior probability conditions. Although the authors did not
attempt to vary the speed pressure or detectability, there were
enough participants so that individual differences can substitute
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Fig. 4. The relationship between average accuracy (the arithmetic average of the
hit and correct rejection rates) and mean RT in a categorization experiment with
fifty participants and three base rate conditions. Accuracy does not depend on the
prior probability condition (see legend), but it does depend on speed, with faster
participants tending tomakemore errors. The four quadrants defined by the dashed
lines in the figure represent the combination of a median split on accuracy with a
median split on speed.

for an explicit experimental manipulation. That is, because both
the detectability of the signal and the parameters of the stopping
rule will vary among participants, a median split on participants’
accuracy crossed with a median split on their speed should simu-
late a two-by-two factorial combination of a sensory and a speed
pressure variable.
The results of this analysis for the three prior probability condi-
tions of Mueller and Weidemann (2008)’s experiment are shown
in Fig. 4. According to sequential theory, the manipulation defined
bymoving diagonally from the lower left (B: fast, inaccurate) to the
upper right quadrant (D: slow, accurate) should be mostly or en-
tirely a speed–accuracy trade-off effect (i.e., decisional), while the
manipulation defined by the negative diagonal – slow, inaccurate
to fast, accurate performance – should be mostly or entirely a de-
tectability effect. A successful recovery of the participants’ ability
to discriminate would therefore yield equal values in quadrants B
and D in Fig. 4 and different values in quadrants A and C.

5.1. Data preparation

The participants in the experiment completed 240 trials in each
of the three prior probability conditions (1 to 3, 1 to 1 and 3 to 1
Signal toNoise ratios). The confidence rating scale was bipolar with
4 levels per response and an explicit yes-or-no cutoff in themiddle.
Excluding the results from three of the participantswho performed
at a chance level, the total sample size was 33440, which was
enough to allow us to set the starting point of the final (slowest)
RT interval to 4 s (roughly the 99th percentile of the dataset) and
the total number of response time categories (intervals) to 7. The
width of the RT intervals was 570 ms, with at least 50 samples
in each interval in each of the conditions to be tested. Letting the
fastest RT interval represent one unit of sensory observation time
plus one unit of delay, the slowest RT interval is kmax + dmax = 8.

Results of the sequential analysis are shown in Fig. 5. In
each of the four panels, the estimated detectability of the signal,
Ω , is plotted as a function of the maximum stopping time,
kmax (i.e., the number of independent detection models in the
sequential decision process). The model with the smallest value,
kmax = 1, is the signal detection theory estimate of sensitivity
Fig. 5. Results of the sequential analysis of the four conditions fromMueller andWeidemann’s (2008) experiment that were presented in Fig. 4. In the upper two and lower
left panels, kmax + dmax = 8 (i.e., the RT scores were divided into seven intervals) and the detectability estimateΩ is compared under the different possible combinations of
kmax and dmax , as indicated on the abscissa (e.g., ‘‘3, 5’’ is kmax = 3 and dmax = 5). When kmax = 1, the sequential measureΩ is the static signal detection theory estimate. In
the lower right panel, estimates ofΩ for different values of kmax are compared when the delay is ignored (assumed to be constant, dmax = 1). In each panel, the estimated
detectability of the signal increases with the ‘resolution’ of the sensory component of the model, kmax . The estimates coincide under different priors (lower left panel) and
converge in the different speed–accuracy trade-off conditions (upper left and lower right panels). In the ‘true’ detectability effect comparison (quadrants A and C in Fig. 4)
the difference in estimated detectability is independent of or increasing with kmax .
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(converted to a percent correct score). The upper two panels
of Fig. 5 compare the two speed/accuracy contrasts, one of
which should be a signal detectability effect (right panel) and
the other which should be due to decision bias (left panel). At
kmax = 1 (the classical detection model), the two manipulations
are indistinguishable, both being apparent sensitivity effects,
but with different magnitudes. As kmax increases, however, the
size of the difference in estimated detectability is reduced to
zero in the speed/accuracy trade-off comparison, while the
difference persists, as expected, in the supposed detectability
contrast. Thus, the analysis correctly eliminates the illusion of
a detectability effect caused by the speed–accuracy trade-off,
without confounding the true detectability effect that presumably
distinguishes the slow, inaccurate participants from the fast,
accurate participants.

The lower left panel of Fig. 5 compares the three prior pro-
bability conditions for each value of kmax.With the exception of one
outlier, there is virtually no difference in estimated detectability
in the three different conditions for any value of kmax. The results
in the lower right panel confirm the ‘robustness’ of the method
that is suggested by the relatively fast convergence of the two
estimated functions in the bias condition (upper left panel). That
is, partitioning the RT data into as few as three speed groups
and fixing the delay time to 1 unit (i.e., assuming that the delay
contributes virtually nothing to the total variation in RT ) is enough
to effectively remove the false performance advantage, with no
loss of power to detect the true change in the detectability contrast.

5.2. Non-sensory components of the response time

The detectability measure Ω would not be expected to be
constant under different speed–accuracy trade-off conditions un-
less its underlying theory adequately describes the dependence
of response accuracy on the stopping time of the sensory obser-
vation process. Intuitively, therefore, the fact that the estimate
of Ω is most invariant (the measure is most ‘successful’) un-
der a speed–accuracy trade-off manipulation when the maximum
proportion of time in which the sensor is assumed to be ‘‘on’’,
kmax/(kmax + dmax), is large compared to the maximum propor-
tional amount of the delay, dmax/(kmax+dmax), is an indication that
the non-sensory component does not contribute much to the total
variation in RT . The fact that the estimated detectability increases
with kmax also suggests that the delay time is relatively small.

In principle, a model selection criterion could be recruited to
determine the best choice of kmax and dmax in the model (e.g.,
McGrory & Titterington, 2007, Myung & Pitt, 1997 and Zhao,
Krishnaiah, & Bai, 1986), and in the future it may be worthwhile
to explore this possibility. At least in the case of Mueller and
Weidemann’s (2008) study, however, the question becomes moot,
because the conclusions that would be drawn about the non-
sensory component did not depend on the choice of kmax.

The estimated joint distributions of kT and D for the three most
illustrative cases, kmax = 3, 4 and 5, are shown in Fig. 6. Increasing
the amount of variability that can be assigned to the non-sensory
component (i.e., decreasing kmax) has no appreciable effect on the
amount that is in fact attributed to this secondary process. In each
case, virtually the entire distribution is focused on the smallest
possible delay time, D = 1, indicating that there is little or no
meaningful variation in the non-sensory part of the RT .

5.3. Dynamics of the detection process

Probably the single most influential source of support for the
classical detection model is the supposed invariance of the sensi-
tivity measure d′ under different priors and payoffs. Tanner and
Fig. 6. Estimates of the joint distribution of stopping and delay times for three
illustrative decision models. In each case, almost all of the variation in the
observable RT is attributed to variation in the sensory observation process.

Swets (1954) considered this to be an important demonstration
of the ‘internal consistency’ of the theory, and its acceptance has
caused many investigators to ignore other empirical results, such
as the relationship between response time and accuracy, that seem
to unequivocally reject the fixed-sample assumption of themodel.

One way to reconcile the contradictory findings is to assume
that under the conditions that appear to validate the fixed-sample
model, the detectability of the signal at a given observation
time, ωk, decreases with k. Under these conditions, the stopping
boundaries would be expected to converge in time due to the
speed pressure, and in such a case the sequential detection model
predicts the invariance that is observed in d′ (MacDonald &
Balakrishnan, submitted for publication).

Estimates ofωk and the stopping boundary functions are plotted
in the two panels of Fig. 7. Since the conclusions are the same,
only the results from the ‘longest’ sensory observation (i.e., with
a constant delay, dmax = 1) and the largest sample size (combining
across the three prior probability conditions) are shown in the
figure. After an initial, sharp increase, the detectability function
declines at each point except the final one. The two endpoints
each have interpretation issues associatedwith them, the first time
interval (0–570 ms) being, technically, shorter than it is supposed
to be (the fastest response is one unit of sensory processing time
plus one unit of delay in the model) and the final time interval
(RT ≥ 4 s) being too long. Even ignoring these, the decrease in
the function may seem to be modest. It is important to recognize,
however, that relatively small changes in ωk can have a relatively
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Fig. 7. Left panel: Estimated detectability at time k, ωk , when kmax = 7 and dmax = 1. The first and final points of the estimated function (k = 1 and k = 7) are not directly
comparable to the others due to the sizes of their corresponding RT intervals. The function is decreasing in the range that is interpretable. Right panel: The stringency of the
estimated stopping condition (distance between the boundaries) relaxes in time, consistent with the loss of signal strength in time.
large impact on the total detectability measure Ω . One way to
quantify the effect of the decay in signal strength in time is to
compare the total detectability implied by the highest and lowest
values of ωk, respectively. If the maximum value of the estimated
ωk function, 0.61, was the detectability at each time k, then the
estimated total detectability would have been Ω = 0.78. In
contrast, if the minimum value of estimated ωk function, 0.57, was
the detectability at each k, then Ω = 0.69. The effect of decay in
the experiment was therefore a difference on the order of about 9%
points in accuracy.

6. Discussion

Detection theorists sometimes assert that the static, or fixed-
sample, detection model does not make predictions about
response times in yes–no detection and discrimination tasks.
Accepting this statement, there is no inherent contradiction
involved in proposing that despite its limitations, the fixed-
sample detection model could still be the general framework of
a more complete theory, which also predicts response times. It is
important to remember, however, that detection theory is, more
than anything else, a statistical decision theory. In the fixed-sample
detection model, the decision maker stops collecting information
because the number of observations is fixed a priori. Therefore, the
probability that the sensory observation process terminates at time
k given that it has not terminated prior to k does not depend on the
observations taken up to k,

P(kT = k | ψ1 = y1, ψ2 = y2, . . . , ψk = yk, kT ≥ k)
= P(kT = k | kT ≥ k),

for each k.
In the sequential detection problem, the stopping rule is defined

on the sensory effect as it evolves, in such a manner that the cost
of the observations can be taken into account along with the cost
of errors. The probability of stopping at time k therefore increases
as the strength of the evidence collected prior to time k increases.
The two stopping rules are clearly mutually exclusive.

Accepting the possibility that experimental devices such as
fixing the stimulus presentation time, emphasizing accuracy, and
other features of the classical yes–no detection task might not be
sufficient to justify the fixed-sample detection model, recovering
the parameters of the sensory process becomes considerably more
difficult. There is an extra dimension, time, and a much wider
range of very different, but equally plausible, detection models.
Our approach was to adopt the basic structure of the classical
threshold signals model, in which there is a flow of information
from one noisy device to another, and then introduce additional
assumptions that, though implausible as exact statements about
the detection process, can be justified with respect to the problem
of estimating the detectability of the signal and describing, in
qualitative terms, the observer’s decision making strategy.

By far the most important assumption of the analysis was that
the likelihood ratio transformation of an observer’s confidence
rating response is a sufficiently accurate measure of the posterior
likelihood ratio that is determined by the sensory effect of the
stimulus on a given trial. In effect, this presupposes that the
observer is able to report the posterior likelihood ratio, which is a
highly implausible, if not impossible, proposition. However, under
a weak condition (the downstream constraint), the computed
likelihood ratio for a given rating response is interpretable as a
certain weighted average of the posterior likelihood ratios that co-
occur with this rating response. In an important sense, therefore,
the likelihood ratio computed from a given rating response is the
average amount of sensory information available at the pointwhen
the given rating response is selected.

The considerable size and complexity of the space of possible
sequential detection models makes it difficult to devise a convinc-
ing set of simulations. Most of the weight of our claim about the
utility of the detectability measure Ω , therefore, is based on the
results of an analysis of empirical data collected by Mueller and
Weidemann (2008). The many different concerns that could be
raised about how observers make confidence ratings certainly ap-
plied to Mueller and Weidemann (2008)’s experiment. For exam-
ple, the participants were inexperienced with the task and were
given no feedback about their consistency in assigning evidence
states to rating responses. There were only four levels of confi-
dence on the rating scale, which meant that the parameters of a
mixture of normal distributions needed to be estimated from only
four points in the left and right tails of the distributions. The ex-
periment was not large enough to perform the analysis for each
participant in each condition separately, and the estimates of Ω
were taken therefore over a random combination of different sen-
sory and decisional processes. Despite these many limitations, it
was sufficient to divide the responses into only three different lev-
els of speed in order to distinguish the speed–accuracy trade-off
manipulation from the sensory effect manipulation. As a basis for
categorizing experimental variables, therefore, the measureΩ ap-
pears to be robust to the kinds of violations of its underlying as-
sumptions that would be expected in a typical experiment.
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