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ABSTRACT. Given the popular and ever-increasing use of path analytic research paradigms
in the social sciences, it is desirable to conduct an investigation into the accuracy of the
standardized path coefficients that are often the end-product of these paradigms. In pursuit
of this goal, population parameters were preset concerning the correlations between all
of the variables and their reliability coefficients. Based on these parameters, thousands of
experiments were generated with varying numbers of cases (n). For each experiment, at each
level of n, standard path analyses were conducted, and standardized path coefficients were
obtained. These standardized path coefficients were then compared against the population
path coefficients on which the simulations were based to determine their accuracy. The
findings indicate mixed evidence for the accuracy of path analysis research paradigms.
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PATH ANALYTIC RESEARCH PARADIGMS have become increasingly popu-
lar in the social sciences, at least in part because they serve a variety of potential
functions. For example, several authorities have indicated that, properly used, path
analytic paradigms enable researchers to draw causal conclusions form correla-
tional data (Angrist, Imbens, & Rubin, 1996; Hope, 1984; Kenny, 1979; Mulaik,
1987). In addition, these paradigms allow researchers to handle a large num-
ber of correlated variables in one set of related equations (James & Brett, 1984;
MacKinnon, 2000; MacKinnon, Krull, & Lockwood, 2000; Pedhazer, 1997). The
combination of these two capabilities, in turn, confers on researchers the ability
to determine complex patterns of causation, including mediation and moderation.
The totality of these capabilities, without the requirement of potentially less prac-
ticable experiments, provides a strong argument for the utility of path analytic
paradigms (McClendon, 1994).
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Nevertheless, there remain critics who are not convinced of the promised
benefits. For example, several researchers have pointed out that path analyses
depend on correlations, and one cannot make a strong case for causation on that
basis (Freedman 1987; Holland, 1986; Rogosa, 1987). However, path analysis
aficionados have countered that the idea is not to infer causation but rather to test
alternative causal models against each other. If a path analysis is more consistent
with one causal model than another, then that is a reason to favor the former
model over the latter one. Another criticism that has been leveled against path
analytic research paradigms is that they require assumptions that are unlikely to
be true, although defenders contend that the assumptions are not as bad as critics
make them out to be (for discussions, see Maruyama, 1998; McClendon, 1994;
Pedhazur, 1997). Critics also have pointed out that because social science measures
are not perfectly reliable and because unreliability has unpredictable effects on
obtained path coefficients (Blalock, 1964; Cohen & Cohen, 1983; Liu, 1988), the
obtained (uncorrected) path coefficients cannot be trusted. However, this criticism
can be countered by the claim that correlations can be corrected for attenuation
due to unreliability. If the path analyses are based on corrected correlations, then
the criticism no longer applies (for a review, see Trafimow, 2006a).

Although we are interested in the various arguments and counterarguments
that pertain to path analysis research paradigms, that is not our present focus.
Rather, our strategy is to assume that path analytic research paradigms are philo-
sophically justifiable when they are based on corrected correlations and address a
different issue. Specifically, how accurate are standardized path coefficients when
they are based on corrected correlations? Obviously, to address this issue, knowl-
edge of the population path coefficients is necessary. Although this knowledge
is generally unobtainable in real research, it is possible to perform simulations
based on population parameters that are preset. Using these preset parameters, it
is possible to have the computer generate thousands of studies based on them,
perform path analyses, and compare the obtained standardized path coefficients
against the population parameters on which they were generated.

There is, of course, an important complication. When correlations are cor-
rected for attenuation due to unreliability, the reliability coefficients obtained in
any particular study are not exactly correct; there is a sampling distribution of reli-
ability coefficients just as there is a sampling distribution of other statistics. Thus,
although the reliability coefficients obtained in particular studies can be used to
estimate population reliability coefficients, the fact that these are estimates, rather
than actual population parameters, introduces an additional source of error. Thus,
there is error associated with the obtained correlations, and there is error associated
with the reliability coefficients that are used to correct them.

Many researchers who perform path analyses fail to adjust the correlations for
attenuation due to unreliability, which is just plain wrong. The more sophisticated
path modelers do make the corrections but nevertheless tend not to focus on the
fact that the reliability coefficients themselves are a source of error. Thus, there
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is a reason to suspect that path analyses might be less accurate than researche.:rs
typically assume because the contribution of error associated with using reliability
coefficients has not received much press. Furthermore, the interaction between the
two classes of errors has not been explored but might further decrease the accuracy
of standardized path coefficients. It seems obvious that if researchers are going tf)
interpret standardized path coefficients, it is important to have some idea of their
accuracy and, if proven to be inaccurate, confidence in such interpretations should
decrease accordingly.

To test these ideas, we performed computer simulations using preset popula-
tion parameters for reliability coefficients as well as for correlation coefficients.

Method

The Simulation Strategy

The first step was to preset the population parameters. Among other issues,
this meant making arbitrary decisions about what the population reliability co-
efficients would be and what the population standardized path coefficients and
correlations would be. We preset the population reliability coefficients of all of
the variables at .8. Also for simplification, we used only three variables; predictor
variable X, potential mediating variable M, and criterion variable Y. Thus, there
were only three correlations from which all standardized path coefticients could
be constructed: (a) the correlation between X and M (rxu), (b) the correlation
between X and ¥ (ryy), and (c) the correlation between M and Y (ryy). The gener-
ated sample correlation coefficients for one set of simulations were _based on the
following population correlation coefficients: (a) poxy was preset at-0.4, (b) pxu
was preset at 0.4, and (¢) pyy was preset at 0. 16. The population coefficients used
in the second set of simulations were pyy preset at 0.5, pxuy preset at 0.5, and
omy preset at 0.25. The population correlation coefficients used in the third set
of simulations were pxy preset at 0.6, pxy preset at 0.6, and pyy preset at 0.36.
The population coefficients used in the fourth set of simulations were pxy pre‘set
at 0.7, pxy preset at 0.9, and pyy preset at 0.63. Note that with these population
correlation coefficients, the population standardized path coefficient from MtoY
is zero in all four sets of simulations, and so there is no mediation in the population
in either case. By using zero, we hoped to make the errors particularly easy to
perceive. The issue of interest in both simulations was how close the generated
path coefficients from M to ¥ would be to the true value of zero.

To proceed with the simulation it is necessary to generate observed scores from
which correlations (rxu, xy. and ryy) and reliability estimates can be obtained.
In accordance with classical test theory, an observed score is the sum of the true
score and an error term. True scores were generated by sampling from a trivariate
normal distribution with mean vector = [px p)y py] and one of the following
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covariance matrixes:.

104 04 109 07
>o=104 1 016|ory =]09 1 063
T [04 016 1 2 |07 063 1

Error terms sampled from a normal distribution with mean zero and variance
0.25 were added to each coordinate of the true score to obtain an observed score
for the simulation. An error variance of 0.25 was chosen so that the population
reliability coefficients would be equal to 0.8. A total of 1,700,000 studies were
generated assuming sample sizes of 50, 100, 200, 500, 1,000, 1,500, ..., 5,000
(65,000 for each sample size). In each study, rxy, rxu, and ryy were calculated
from the sample of observed scores. The test-retest method was used to obtain
reliability estimates (rxx’, rams’, and ryy’) for each sample: Another set of observed
scores was generated from the underlying set of true scores and reliability was
estimated by correlating the scores across tests.

Given that the previous step resulted in rxy, rxar, and rxyy, as well as ryy/,
run’, and ryy', the next step was to correct the three correlation coefficients using
the three reliability coefficients. This was done according to Equations 1, 2, and
3 below. We used upper-case letters to indicate the best estimates of population
parameters so that Rxy is the best estimate of pxys, Ryy is the best estimate of
puys and Ryy is the best estimate of pyy.

rxm
XXMM
'my
A/ Tmm Tyy
¢4

A/ Txx'Fyy

Rxy =

@

Ryy =

@

Rxy =

3

Given the corrected correlations, Rxy, Ruyy, and Rxy, it was now possible
to compute standardized path coefficients according to Equations 4, 5, and 6.
Because these were based on corrected correlations, upper-case letters will be used,
indicating that these standardized path coefficients are the best estimates that can
be made from the corrected sample data. Note that it is the last equation—Equation
6—that we focus on as the population standardized path coefficient equals zero
for all four sets of simulations.

Pxy = Rxum 4)
Rxy — RyyR

Pey = (Rxy sz XM) )
(1 - RXM)

(Rmy — RxyRxm)

P =

(6)
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Results

Given that the preset value of the standardized path coefficient from M to
Y always was zero, the mean across all of the simulations should have approxi-
mately equaled zero and a failure to obtain this result would indicate that we had
done something wrong in the simulations. Thus, before looking at the findings
of main interest, we checked this mean, and it was essentially zero. In addition,
all of the mean standardized path coefficients were essentially equal to the preset
values, thereby indicating that the simulations were performed correctly. Let us
now address our main interest—how often do the standardized path coefficients
in studies approximate the actual population coefficients? Figures 1-4 answer this
question. Figure 1 is based on the set of smallest population correlation coeffi-
cients (pxy = 0.4, pxy = 0.4, and ppy = 0.16), Figure 2 is based on the second
set of population correlation coefficients (oxy = 0.5, pxu = 0.5, and pyy = 0.25),
Figure 3 is based on the third set of population correlation coefficients (pxy = 0.6,
oxu = 0.6, and pyy = 0.36), and Figure 4 is based on the largest set of population
correlation coefficients (oxy = 0.7, pxu = 0.9, and pyy = 0.63). In all four figures,
we computed the percentage of times that the sample standardized path coeffi-
cient indicating the strength of the path between M and Y (Pyy) was within 0.05
(£ 0.025) or 0.1 (& 0.05) of the population standardized path coefficient (remem-
ber that this was preset at zero). When the sample size is a relatively small but

100 o O = r = =0
_so==C" o
-
1” e® |
80 ol
4
4
4
60 of

7
’
¢
/ /

O

40 =
S
'O
&

20 &

0

Percentage within range (%)

50 100 | 200 | 500 | 1,000 | 4,500 | 2,000 | 2,500 | 3,000 | 3,500 | 4,000 | 4,500 | 5,000
[amom®01 | 211 | 283 | 406 | 616 | 755 | 849 | 894 | 939 | 954 | 96.9 98.1 | 985 | 988

i-—.—O,DS 118 | 144 23 33 445 | 525 | 605 | 653 698 | 736 763 | 784 | 81.6
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realistic 50, Figure 1 shows that only 11.8% of the obtained standardized path
coefficients are within 0.05 of the true value and, even with an extremely liberal
criterion of 0.1, this percentage increases to only 21.1%. Increasing the sample
size to 2,500 increases accuracy such that 65.3% of the standardized path coeffi-
cients are within 0.05 of the true value and 93.9% are within 0.1 of the true value.
Finally, when the sample size increases to 5,000, a more impressive 81.6% of the
obtained standardized path coefficients are within 0.05 of the true value, and an
even more impressive 98.8% are within 0.1 of the true value. Thus, Figure 1 isa
generally pessimistic illustration of the accuracy of path analyses unless extremely
large sample sizes are used.

Figures 2—4, which are based on increasingly larger population correlations,
suggest even more pessimism. At worst, consider Figure 4. When the sample size
is 50, only 3.0% of the standardized path coefficients are within 0.05 of the true
value and this only increases to 6.2% when a 0.1 criterion is used. Increasing the
sample size to 2500 improves accuracy such that 23.3% of the standardized path
coefficients are within 0.05 of the true value and 46.3% meet the 0.1 criterion.
Even when the sample size is increased further to 5,000, only 32.5% meet the 0.05
criterion and 60.9% meet the 0.1 criterion.

An alternative way to explore the accuracy issue is to compute the standard
deviations of the standardized path coefficients. Table 1 presents these for all four
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TABLE 1. Standard Deviations of Standardized Path Coefficients Between M and Y as a Function of the Sizes of the Population

Correlation Coefficients and the Sample Sizes

Sample sizes

100 200 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

50

Correlation

0.06
0.02
0.02
0.02

0.06
0.02
0.02
0.02

0.06
0.02
0.02
0.02

0.07
0.03
0.02
0.02

0.08
0.03
0.02
0.02

0.08
0.03
0.03
0.03

0.09
0.03
0.03
0.03

0.11
0.04
0.03
0.03

0.13
0.05
0.04
0.04

0.20
0.07
0.06
0.06

0.55
0:12
0.10
0.10

3.94
0.16
0.14
0.14

7.31
0.25
0.21
0.21

0.6
0.5

0.4

sets of simulations. Consistent with the foregoing simulations, standard deviations
decrease as the population correlations decrease and as the sample sizes increase.

Discussion

The results can be summarized easily. Of greatest importance, although the
population correlations were set up in such a way so as to make the standardized
path coefficient from M to Y equal to zero (no mediation), it was a rare occasion
when the results from a particular study were consistent with this. Rather, the
standardized path coefficients obtained in particular studies often failed to be
within 0.05, or even 0.1, of the correct value even when fairly large sample sizes
were used. Thus, mediation was likely to be demonstrated even when there was
none in the population. Not surprisingly, accuracy increased as the sample size
increased and accuracy was also influenced by whether the population correlations
were larger or smaller. Note that these findings were obtained with correlation
coefficients that were corrected for attenuation due to the unreliability of the
measures. Had we not corrected for attenuation, the accuracy of the path analyses
would have been found to be substantially decreased relative to what Figures 1-4
demonstrate.

One potential interpretation of our simulations is that they provide no reason
for worry. Because accuracy increases as sample size increases, it is merely nec-
essary to use a large sample size and then the universe is friendly. We see three
problems with this interpretation. The first problem is a practical one. Specifically,
our minimum sample size was 50, which is fairly common in path analytic studies,
and Figures 1 and 2 showed that many more participants than that are needed to
obtain a reasonable degree of accuracy. Interestingly, we have been informed on
more than one occasion by researchers who use the paradigm that a major induce-
ment for doing so is precisely because one does not need many participants.! In
contrast, Figures 1-4 demonstrate that very large sample sizes are critical, or the
obtained path coefficients are likely to be inaccurate. It is possible that many of
the mediation findings that have been obtained in the psychological literature are
spurious.

This pessimistic conclusion actually may be overly optimistic when a second
issue is considered. Specifically, our simulations were performed with only three
variables. What if many more variables are considered, as is generally the case
when researchers use path analytic paradigms? In this case, there would be yet
further sources of error because there are more correlations to obtain, and because
there are more reliability coefficients to obtain. As these additional sources of
error are included, the number of participants necessary for reasonable accuracy
is likely to increase.

Then, too, a third factor to consider is that we made the very generous as-
sumption that the only errors are random errors and that there are no nonrandom
errors. This assumption is practically certain to be false in real research, and
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Trafimow (2006a) has documented the deleterious effects of nonrandom invalid-
ity on obtained standardized path coefficients. The combination of all three of
these factors suggests that path analytic paradigms should be used with extreme
caution.

It is possible to imagine potential objections. For example, one might argue
that statistical significance tests take care of the problem of inferring mediation
when there is none, and so the inaccuracy demonstrated in Figures 1 and 2 is not so
important. But this potential objection can be refuted easily. For one thing, it is well
known that obtained p values fail to provide the probability of wrongly rejecting
the null hypothesis (Bakan, 1966; Carver, 1978, 1993; Cohen, 1994; Meehl, 1978;
Nickerson, 2000; Rozeboom, 1960, 1997; Schmidt, 1996; Schmidt & Hunter,
1997, 2002; Trafimow, 2003; for a recent review, see Trafimow, 2006b). This is
because, contrary to popular belief, p is not the probability that the null hypothesis
is true given the finding but rather is the probability of obtaining a finding in a
particular range given that the null hypothesis is true (Nickerson, 2000). Even
when p is an extremely low number (e.g., less than 0.05), the probability of the
null hypothesis given the finding can be anywhere between 0 and 1 (see Trafimow,
2003, Figure 1; for areview, see Trafimow, 2006b).2 In addition, Trafimow and Rice
(2009) demonstrated that the correlation between p values and the probabilities of
the hypotheses to which they correspond is low and becomes even lower when p
values are used to make dichotomous decisions about hypotheses.

It is interesting to contrast Figures 1-4, and the contrast between Figure 1 and
Figure 4 is particularly easy to perceive. Although Figure 1 indicates that accuracy
is low unless extremely large sample sizes are used, Figure 4 indicates that, even
when the sample size is 5,000, accuracy nevertheless remains poor. What is the
difference between Figures 1 and 4 telling us? To answer this question, consider
again that Figure 1 was based on generally small population correlation coefficients
(oxy = 0.40, pxp = 0.40, and pyy = 0.16), whereas Figure 4 was based on larger
ones (pxy = 0.70, pxpr = 0.90, and pyy = 0.63). Clearly, then, it seems that larger
correlation coefficients lead to more inaccuracy than do small ones (note that
Figures 2 and 3 are intermediate), although it is important to remember that the
means of the sample standardized path coefficients are appropriately very close
to the population value of zero regardless of whether small or large correlations
population correlation coefficients were used. A possible explanation is that higher
correlations mean more multicollinearity, thereby reducing the stability of the
regression coefficients.

It could be argued that this is a good thing. Many correlations in the social
science literature tend to be small or moderate (e.g., between .2 and .6), and
so it is better if small correlations give more accurate M to Y path coefficients
than if larger ones do. But this argument fails to take into account the difference
between correlation coefficients that have been corrected for attenuation due to the
unreliability of the measures versus correlations coefficients that have not been so
corrected. To understand why this is important, consider Equation 7 below, which
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was obtained simply by rearranging the terms from Equation 6.

rxy = RxyN/rxxTyy @)

Suppose that we instantiate some numbers into Equation 7 keeping the “true”
or corrected correlation constant at 0.7. First, suppose that both measures are
reliable at the 0.9 level, in which case the expected obtained correlation would
be 0.63, which is not dramatically far away from the correct value of 0.7. But
the decrease becomes increasingly more dramatic as the measures are set at less
reliable levels such as 0.8 (expected rxy = 0.56), 0.7 (expected ryy = 0.49), 0.6
(expected ryy = 0.42), and so on. Consequently, Equation 7 provides reason to
suspect that the obtained correlations in the literature are substantially less than
what they would be if corrected using Equation 6. In turn, this implies that the true
or corrected correlations between variables common in the literature really are
large, in which case the pessimistic implications of Figure 4 retain their full force.

But why are obtained standardized path coefficients so inaccurate, especially
given that we only used three variables? To answer this question, note that there
were actually six, and not three, sources of error. That is, there are sampling
distributions associated not only with the population correlations of interest (pxas,
pmy, and pxy) but also with the reliability coefficients that are used to correct
them (pxx’, pands and pyy’). With all of the sources of error, even if each source
contributes only a small amount of error, the multiplication of errors quickly
decreases the obtained accuracy. To make salient the extent of such multiplication,
consider that instead of using four equations to obtain an estimate of Pjy; three to
correct the relevant correlation coefficients and one where they can be instantiated
to obtain the estimate of Pyy; it is possible to combine these operations in a single
equation, as is shown by Equation 8. Equation 8 includes all six sources of error to
illustrate how they combine to contribute to inaccuracy. Of course, as we indicated
earlier, as more variables are added, there are more correlations of interest and
more reliability coefficients, thereby further decreasing accuracy. For example, if
there are four variables (X, M, Q, and Y), then there are six correlation coefficients
of concern (pxu, Pxo> Pxys Pmo> Puy, and poy) and four reliability coefficients
of concern (oxx’, pum’s Poo’s and pyy’), making for 6 + 4 = 10 sources of error
rather than the six in the present simulations.

TMMTYY' XETY XXMM
2
(-5
5 XX’ 4 M, M/

The foregoing simulations indicate that researchers should be more cautious
than they currently are about interpreting standardized path coefficients. The un-
pleasant fact of the matter is that standardized path coefficients based on typical

( MY XYy XM )

®)

Pyy =
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sample sizes are not very accurate. In addition, the accuracy decreases rather than
increases when the base level correlations increase. We think it would be a useful
exercise for researchers to obtain a matrix not just of observed correlations but of
corrected correlations too, to get an estimate of how large the base correlations
actually are. This can be accomplished via Equations 1-3. If the corrected cor-
relations are large, and we suspect they would be in many cases, the researcher
would have even more reason to be cautious about interpreting the standardized
path coefficients. Researchers should present corrected correlation matrices as
standard reporting practice so readers can make their own judgments about how
much confidence to place in the standardized path coefficients.

In conclusion, even assuming the truth of all of the assumptions that path
analysis aficionados need to make, the present simulations demonstrate that there
are major accuracy problems unless sample sizes are employed that vastly exceed
those typically used in psychology publications. The simulations call into question
the majority of this literature and suggest that future researchers should either
use much larger sample sizes or be more cautious in making inferences about
mediation.

NOTES

1. Citations are omitted to protect the guilty.

2. The posterior probability of the null hypothesis (probability of the null given the find-
ing) clearly depends, in part, on its prior probability. In turn, the prior probability depends
on whether the null hypothesis specifies a point or a range (for a review, see Trafimow
2006b). If the null hypothesis specifies a point, then its prior probability approaches zero
thereby rendering the whole issue of its rejection on the basis of obtained data to be moot.
However, if the null hypothesis specifies a range, so that it has a respectable (nonzero)
prior probability, then Figure 1 from Trafimow (2003) demonstrates that it may have a
large posterior probability too, even when p is low (e.g., less than .05). More generally,
Trafimow (2003; Figure 1) demonstrates that when a null hypothesis is set up that has
a reasonable prior probability of being true then the null hypothesis significance testing
procedure cannot validly be used to reject it. And when the prior probability of the null
hypothesis is extremely low, then it can be more validly rejected but rejecting a hypothesis
that is known, prior to acquiring the data, to probably be false, provides for little gain in
knowledge (Trafimow, 2003; Figure 2). Thus, the null hypothesis significance testing pro-
cedure provides a poor basis for drawing conclusions about the probabilities of hypotheses
in general, or more specifically for hypotheses about mediation.
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Object Naming in Dyslexic Children:
More Than a Phonological Deficit
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ABSTRACT. In the present study, the authors investigate how some visual factors related
to early stages of visual-object naming modulate naming performance in dyslexia. The
performance of dyslexic children was compared with 2 control groups—normal readers
matched for age and normal readers matched for reading level—while performing a discrete
naming task in which color and dimensionality of the visually presented objects were
manipulated. The results showed that 2-dimensional naming performance improved for
color representations in control readers but not in dyslexics. In contrast to control readers,
dyslexics were also insensitive to the stimulus’s dimensionality. These findings are unlikely
to be explained by a phonological processing problem related to phonological access or
retrieval but suggest that dyslexics have a lower capacity for coding and decoding visual
surface features of 2-dimensional representations or problems with the integration of visual
information stored in long-term memory.

This work was supported by Fundagdo para a Ciéncia e Tecnologia (SFRH/BD/
28488/2006, PTDC/PSI/64920/2006, PTDC/PSI-PCO/110734/2009, IBB/CBME, LA,
FEDER/POCI 2010), the Max Planck Institute for Psycholinguistics, the Donders In-
stitute for Brain, Cognition and Behaviour, Radboud University Nijmegen, and the Swedish
Dyslexia Foundation.

Address correspondence to Alexandra Reis, Departamento de Psicologia, Faculdade de
Ciéncias Humanas e Sociais, Campus de Gambelas, Universidade do Algarve, 8005-139
Faro, Portugal; aireis@ualg.pt (e-mail).

215



