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Two sound localization algorithms based on the head-related transfer function were developed. Each
of them uses the interaural time delay, interaural level difference, and monaural spectral cues to
estimate the location of a sound source. Given that most localization algorithms will be required to
function in background noise, the localization performance of one of the algorithms was tested at
signal-to-noise ratios �SNRs� from 40 to −40 dB. Stimuli included ten real-world, broadband
sounds located at 5° intervals in azimuth and at 0° elevation. Both two- and four-microphone
versions of the algorithm were implemented to localize sounds to 5° precision. The two-microphone
version of the algorithm exhibited less than 2° mean localization error at SNRs of 20 dB and greater,
and the four-microphone version committed approximately 1° mean error at SNRs of 10 dB or
greater. Potential enhancements and applications of the algorithm are discussed.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2909566�
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I. INTRODUCTION

An ongoing project at the U.S. Army Research Labora-
tory has been to develop a biologically inspired algorithm to
localize sounds in noisy environments in near real time. The
motivations for this project are twofold: first, the algorithm
could be implemented in autonomous robots or other un-
manned vehicles to allow for accurate navigation and envi-
ronment monitoring. The human listener provides an excel-
lent example of an autonomous system that provides
accurate location estimates in a wide variety of suboptimal
environments. Second, a biologically inspired sound local-
ization algorithm could be integrated into a computational
auditory scene analysis �CASA� framework to segregate con-
current sounds based on the spatial locations of the sound
sources. Location-based CASA approaches rely on localiza-
tion algorithms to estimate sound source positions.

Machine-based sound localization systems take the input
from two or more microphones to estimate the azimuth and
elevation of a sound source. The localization algorithm must
somehow extract location cues from the inputs to the sensors
and determine the sound source location most likely to have
produced the observed cues. Development of a new localiza-
tion algorithm requires identification of the cues to be ex-
tracted as well as the decision process to be used to produce
a location estimate. Which cues and decision processes are
chosen depends on the goal of the algorithm designer. The
human listener achieves accurate localization performance
by using three types of location cues: the interaural time
difference �ITD�, the interaural level difference �ILD�, and
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monaural spectral cues resulting from the irregular shape of
the head and torso of the listener. Many sound localization
algorithms utilize only the time delay cue to estimate the
location of the sound source presumably because it is the
easiest cue to extract from an incoming signal. For example,
Calmes et al. �2007� constructed a neurally inspired model to
detect ITDs to localize pure tones and wideband stimuli. The
model performed well for wideband stimuli when the do-
main of potential locations was restricted to the front hemi-
sphere. Viera and Almeida �2003� constructed a two-sensor
system that localized sound sources between +60° and −60°
azimuth to a precision of 9°. The restriction of possible lo-
cations to a single hemisphere is common to all localization
algorithms that exclusively rely on the time delay between
two microphones to estimate the location of the sound �e.g.,
Lotz et al., 1989; Halupka et al., 2005�. The performance of
these algorithms will suffer if sounds located in the rear
hemisphere are included because any two-sensor system that
exclusively relies on time delay cues will suffer from fre-
quent front/back confusions. A time delay measured between
the sensors will identify a subset of potential locations that
lie on the surface of a cone extending outward from one of
the sensors �Blauert, 1989�. The subset of potential locations
can be further reduced in two ways: by restricting the range
of potential locations �the approach taken by Calmes et al.
�2007�, Viera and Almeida �2003�, and others� or by using
additional cues to estimate the source location. Chung et al.
�2000� sought to resolve the ambiguity of the time delay cue
by including monaural spectral cues in the localization algo-
rithm. The model exhibited approximately 10° of localization
error when broadband stimuli were presented from either
hemisphere. Zakarauskas and Cynader �1993� developed an
algorithm that compared the frequency spectrum of the in-
coming stimulus to the head-related transfer function

�HRTF� �see Wightman and Kistler, 1989� in the frequency
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domain, which is equivalent to using the ILD and monaural
spectral cues to localize the sound. The mean error ranged
from 0.29° to 25.4° depending on the stimulus being local-
ized. Several other models have relied on ILD and monaural
spectral cues to localize stimuli as well �Neti et al., 1992;
Middlebrooks, 1992; Chau and Duda, 1996�. Lim and Duda
�1995� constructed a localization algorithm that utilized ITD,
ILD, and monaural spectral cues to accurately estimate the
location of an impulse source in an anechoic environment.
The algorithm functioned by estimating the ITD and ILD
from an incoming signal and comparing the estimates to a set
of ITDs and ILDs from known source locations. The algo-
rithm was able to perform quite accurately, exhibiting 0.8° of
azimuth error in an anechoic environment.

The real-world performance of these algorithms is diffi-
cult to determine, however, given that nearly all of them
were tested in a quiet environment. Most localization sys-
tems will be required to operate in a noisy environment, and
the type of stimuli to be localized could considerably vary
from the ideal. To this end, this paper details the design and
subsequent testing of a biologically inspired sound localiza-
tion algorithm that uses ITD, ILD, and monaural spectral
cues to estimate the locations of real-world sounds. The hu-
man listener also takes advantage of other location cues dur-
ing real-world sound localization tasks, including cues based
on head movement, knowledge of the environment, or pre-
vious exposure to the stimulus being localized. Ideally, these
location cues would have been included in the algorithm as
well. Given the difficulty in extracting these cues, however,
the localization algorithm was constructed to take advantage
of only those cues available to a stationary, naive listener.
The performance of the algorithm was measured across a
range of signal-to-noise ratios �SNRs� to estimate the perfor-
mance under suboptimal conditions.

The algorithm was designed to function using two or
more microphones mounted in nearly arbitrary locations. The
number of microphones included in the array depends on the
application of the algorithm. If the algorithm is to be part of
a system in which biological plausibility is required �in
CASA applications or human localization modeling, for ex-
ample�, only two microphones are appropriate. If one is not
subject to this restriction, however, then the number of mi-
crophones included in the array will be determined by the
accuracy required and the computational resources that are
available. Increasing the number of microphones from two to
four, for example, is likely to improve the performance by
reducing the number of front/back confusions exhibited by
the localization system. This will be accomplished at the cost
of increased computational requirements of the algorithm.
Given that one of the eventual goals of this effort is to de-
velop a location-based approach to CASA, the microphones
were mounted to the Knowles electronics mannequin for
acoustic research �KEMAR�. The KEMAR is a human
model that mimics the effects of the head and torso on an
incoming sound wave. Both two- and four-microphone
implementations of the algorithm were tested to determine
the increased performance gained when another pair of mi-

crophones is added to the array.
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II. LOCALIZATION ALGORITHMS

Consider an array of m microphones mounted at arbi-
trary locations whose center is at point P. Imagine a sound
that originates from azimuth � and elevation � relative to P.
The task of any localization algorithm is to process each of
the m microphone inputs �I1 , . . . , Im� to generate azimuth and

elevation estimates �̂ and �̂, respectively. Ideally, the algo-
rithm should utilize all available location cues to maximize
accuracy. Differences in times of arrival between the micro-
phones will vary with the location of the sound source and
can therefore be utilized to generate location estimates. Ad-
ditional location cues are available if the frequency content
of the microphone inputs varies with the location of the
sound source. This can be achieved by inserting an object
centered at P into the listening environment so that the fil-
tering properties of the object will vary with the orientation
of the sound source.

For illustrative purposes, consider the situation in which
m=2 microphones are mounted at the opening to each ear
canal of a KEMAR. Let the center of the head of the KE-
MAR be located at P. Consider a sound that originates at
azimuth � and elevation � relative to P. The sound is altered
by the head and torso of the KEMAR before it arrives at the
microphones. If Ij is a digital recording of the input to the jth
microphone, then

Ij = O � Fj
��,��, �1�

where O is the sound that would arrive at point P if the
KEMAR were absent, � is the convolution operator, and
Fj

��,�� is the head-related impulse response �HRIR� for micro-
phone j when a sound originates from �� ,��. The HRIR is a
representation of the HRTF in the time domain rather than
the frequency domain and can therefore include both the
time- and frequency-based filtering effects of the head and
torso.

Consider the result when I1 is convolved with �F1
��,���−1,

which is the inverse of the HRIR associated with �� ,�� at
microphone 1. In this case,

I1 � �F1
��,���−1 = �O � F1

��,��� � �F1
��,���−1 = O �2�

due to the associativity of the convolution operator. In other
words, if the effects of the head and torso of the KEMAR are
removed from the recordings, the stimulus that would have
arrived at P if the KEMAR was absent is the result. Simi-
larly,

I2 � �F2
��,���−1 = �O � F2

��,��� � �F2
��,���−1 = O . �3�

In both cases, if the inverse of the HRIR associated with the
actual location of the sound source is chosen, then the origi-
nal unaltered stimulus is the result. However, if the inverse
of the HRIR associated with some other location ��� ,��� is
convolved with the microphone inputs, then

I1 � �F1
���,����−1 = �O � F1

��,��� � �F1
���,����−1 �4�
and
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I2 � �F2
���,����−1 = �O � F2

��,��� � �F2
���,����−1. �5�

In this case, the convolution does not lead to the same result
for I1 and I2. This suggests a method for determining the
location of the sound source �� ,�� from the microphone in-

puts I1 and I2: choose ��̂ , �̂� to maximize the similarity be-

tween I1� �F1
��̂,�̂��−1 and I2� �F2

��̂,�̂��−1. Of course, a wide va-
riety of similarity metrics are available; a moderate amount
of testing suggested that the Pearson correlation maximized
the accuracy and reliability of the “inverse” localization al-

gorithm. Formally, the inverse algorithm chooses ��̂ , �̂� ac-
cording to the following equation:

max
��̂,�̂�

r�I1 � �F1
��̂,�̂��−1,I2 � �F2

��̂,�̂��−1� . �6�

Another localization algorithm that does not require in-
verse filters was also developed. Continuing the example of
two microphones mounted at the openings of the ear canals
of the KEMAR, each input is convolved with the HRIR as-
sociated with the opposite microphone. If the HRIR associ-
ated with the correct location �� ,�� is used, then

I1 � F2
��,�� = �O � F1

��,��� � F2
��,�� = O � F1

��,�� � F2
��,�� �7�

and

I2 � F1
��,�� = �O � F2

��,��� � F1
��,�� = O � F2

��,�� � F1
��,��

= O � F1
��,�� � F2

��,��. �8�

This follows from the commutativity and associativity of the
convolution operator. As with the inverse algorithm, if the
correct location is chosen, then the operation will lead to the
same result for both microphone inputs. If the HRIR associ-
ated with some other location ��� ,��� is chosen, however,
then the results will differ:

I1 � F2
���,��� = �O � F1

��,��� � F2
���,��� = O � F1

��,�� � F2
���,���

�9�

and

I2 � F1
���,��� = �O � F2

��,��� � F1
���,��� = O � F2

��,�� � F1
���,���

= O � F1
���,��� � F2

��,��. �10�

As before, the “cross-channel” algorithm uses the Pearson
correlation coefficient as the similarity metric, choosing

��̂ , �̂� as follows:

max
��̂,�̂�

r�I1 � F2
��̂,�̂�,I2 � F1

��̂,�̂�� . �11�

The generalization of these algorithms to more than two
microphones is relatively straightforward. A microphone ar-
ray with 2N microphones is arbitrarily partitioned into N
microphone pairs. Let the first and second microphones in
the kth pair be denoted by k1 and k2, respectively. The asso-
ciated microphone inputs will be denoted by Ik1

and Ik2
by

using this notation. For the inverse algorithm, the first micro-
phone input in each pair is convolved with the associated
inverse impulse response, as in Eq. �2�. The results of the N

convolutions are then concatenated:
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I11
� �F11

��̂,�̂��−1 & ¯ & IN1
� �FN1

��̂,�̂��−1, �12�

where & is the concatenation operator. Similarly, the second
microphone input in each pair is convolved with the associ-
ated inverse impulse response, and the results of the N con-
volutions are concatenated:

I12
� �F12

��̂,�̂��−1 & ¯ & IN2
� �FN2

��̂,�̂��−1. �13�

The concatenated results are then correlated to determine

��̂ , �̂�:

max
��̂,�̂�

r�I11
� �F11

��̂,�̂��−1 & ¯ & IN1
� �FN1

��̂,�̂��−1,�

�I12
� �F12

��̂,�̂��−1 & ¯ & IN2
� �FN2

��̂,�̂��−1� . �14�

Note that Eq. �14� simplifies to Eq. �6� when only one mi-
crophone pair is used. The multichannel implementation of
the cross-channel algorithm is structured in a similar fashion.

In this case, ��̂ , �̂� is chosen as follows:

max
��̂,�̂�

r�I11
� F12

��̂,�̂� & ¯ & IN1
� FN2

��̂,�̂�,�

�I12
� F11

��̂,�̂� & ¯ & IN2
� FN1

��̂,�̂�� . �15�

Equation �15� reduces to Eq. �11� when only one pair of
microphones is used.

Of the two algorithms presented here, it is likely that the
cross-channel algorithm will be preferred for most applica-
tions. The inverse algorithm is likely to require greater com-
putational resources than the cross-channel algorithm. Ap-
propriate inverse filters that account for the magnitude and
phase portions of the HRIR are typically of greater complex-
ity than the original filter. For example, by using the method
detailed by Greenfield and Hawksford �1991�, an inverse fil-
ter that accounts for both magnitude and phase response will
be approximately three times longer than the original HRIR.
Considering that these inverted HRIRs are convolved with
the microphone inputs, the computational requirements of
the inverse algorithm will be substantial. In addition, meth-
ods to compute inverse filters produce filters that are only an
approximate inverse of the original �Rife and Vanderkooy,
1989�. Because the accuracy of the inverse filter increases
with its length, one must consider the trade-off between the
accuracy of the inverse filter and computational requirements
of the algorithm. Fortunately, the cross-channel algorithm
does not suffer from these drawbacks: inverse filters are not
required. For this reason, the cross-channel algorithm was
chosen for further testing.

Our initial test of the cross-channel algorithm examined
the performance of a two-microphone implementation �Mac-
Donald, 2005�. Real-world, broadband sounds were recorded
at 5° intervals around the head of the KEMAR. Noise was
added to each recording to obtain SNRs from 40 to
−40 dB, and the cross-channel algorithm estimated the loca-
tion of the sound source from the noisy recordings. The al-
gorithm performed well beyond expectations: the localiza-

tion error in quiet was measured at 2.9° using only two
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microphones, and above-chance performance was observed
at greater than or equal to −10 dB SNRs. Front/back confu-
sions occurred in approximately 5% of the trials at the higher
SNRs.

These promising initial results prompted a larger-scale
test using both two- and four-microphone versions of the
algorithm. Accordingly, two additional microphones were
mounted on the front and rear of the head of the KEMAR.
The additional microphones should allow for a reduced num-
ber of front/back confusions and an increased localization
accuracy at the expense of an increased computation time.

III. SIMULATION METHOD

A. Stimuli

Ten naturally occurring sounds were chosen as the test
signals: the sounds of breaking glass, a speech stimulus, the
insertion of an M-16 magazine, a camera shutter release
sound, machine gun fire, a cough, a dog bark, a door being
slammed, a water dripping noise, and the sound of a heavy
object being dropped into a body of water. Sounds ranged
from 400 to 600 ms in duration and were stored in a 16 bit
Microsoft WAV format with a sampling rate of 44.1 kHz.

B. Stimulus recording apparatus

Stimuli were presented using the Army Research Labo-
ratory Human Research and Engineering Directorate’s Ro-
boArm 360 system. This system consists of a speaker at-
tached to a computer-controlled robotic arm. The stimuli
were output through a Tucker–Davis Technologies �TDT�
System II DD1 digital to analog converter, which was am-
plified using a TDT System 3 SA1 amplifier, and presented
from a GF0876 loudspeaker �CUI, Inc.� at the end of the
robotic arm. Stimuli were presented at approximately 75 dB
�A� measured 1 meter from the loudspeaker. The arm posi-
tioned the loudspeaker at 5° intervals around the KEMAR �a
total of 72 positions�. The loudspeaker was located 1 m from
the center of the head of the KEMAR and at 0° elevation for
all stimulus presentations.

Two EM-125 miniature electret microphones �Primo
Microphones, Inc.� were used to record the stimulus presen-
tations. Recordings were made in two sessions. In the first,
the pair of microphones was mounted in foam inserts at the
entrance of the ear canals of the KEMAR. In the second, the
microphones were placed at the front and rear of the head of
the KEMAR. The front microphone was attached to the cen-
ter of the forehead just above the bridge of the nose, and the
rear microphone was attached at the same elevation at the
rearmost part of the head. Inputs to the microphones were
amplified by a TDT System 3 MA3 microphone amplifier
before being sent to a TDT System II DD1 analog to digital
converter. The digital output of the DD1 was sent to a com-
puter for storage in a 44.1 kHz, 16 bit Microsoft WAV for-
mat. By combining across recording sessions, a total of 720
four-channel recordings were made, one for each position/

sound combination.

J. Acoust. Soc. Am., Vol. 123, No. 6, June 2008 Justin A
C. HRIR measurement

The HRIR of the KEMAR was measured using the same
presentation and recording apparatus detailed above. The
maximum-length sequence �see Rife and Vanderkooy, 1989�
stimuli were presented at 5° intervals around the head of the
KEMAR and the signals recorded at the microphones deter-
mined the HRIR of the KEMAR at each location. As with
the stimulus recordings, the front/back and left/right impulse
responses were separately estimated. Each HRIR was stored
as a 256-tap finite impulse response digital filter.

D. Procedure

Simulations were conducted using a script written in
MATLAB �The Mathworks, Natick, MA� to estimate the per-
formance of both the two- and four-sensor versions of the
cross-channel algorithm. In the two-sensor simulation, the
algorithm utilized the HRIRs associated with the left and
right microphones to process the recordings made at those
locations, and estimates were produced using Eq. �11�. The
four-sensor simulation used Eq. �15� to apply the four-
channel HRIRs to the four-channel recordings. Locations
were estimated with 5° precision in both simulations. A ran-
dom sample of Gaussian noise was added to each channel of
each recording to obtain SNRs ranging from 40 to −40 dB
in 10 dB increments. The SNR for each trial was calculated
based on the signal channel with the greatest root-mean-
squared amplitude. The algorithm was required to localize
each recording ten times; a different sample of Gaussian
noise was added on each attempt. This resulted in a total of
64 800 localization attempts for each of the simulations
�9 SNRs�720 recordings�10 trials each�.

IV. RESULTS

All location estimates in the simulation were left uncor-
rected: estimates were not reflected across the interaural axis
when a front/back confusion occurred. The absolute error
�the absolute value of the angular distance between the esti-
mated and actual sound locations, in degrees� was used as
the error measure. The mean error observed at each SNR
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FIG. 1. Mean localization error in each SNR condition. The bars indicate
the standard error associated with each mean. The location estimates were
not corrected for front/back confusions. Chance performance in this local-
ization task corresponds to a 90° mean error.
�collapsed across the ten sound stimuli� is shown in Fig. 1.
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The two-microphone implementation exhibited approxi-
mately 2° localization error when the SNR was greater than
10 dB and performed well above chance levels to −20 dB.
The four-microphone implementation exhibited an even
greater accuracy, maintaining a mean error of approximately
1° in SNRs of 10 dB and greater and performing above
chance to −20 dB. The performance of the algorithm varied
somewhat across stimuli; the error bars in the figure indicate
the standard error of the mean calculated across the stimulus
set. The effect of the stimulus on the performance of the
algorithm is illustrated in greater detail in Fig. 2: the errors
associated with the best- and worst-localized sounds are
shown for the two- and four-sensor versions of the algorithm.
In general, performance increased with the bandwidth of the
stimulus.

The mean localization error observed in the 10 dB SNR
condition at each location is shown is Fig. 3. The 10 dB
condition was chosen so that a sufficient number of errors
could be included in the figure. The two-sensor implementa-
tion of the algorithm exhibited systematic errors at higher
noise levels when sounds were located just behind the inter-
aural axis. The large majority of these errors were back-to-
front confusions. There is a slight asymmetry in the two-
sensor error pattern; this is likely due to the acoustic
properties of the room in which the sound recordings were
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interaural axis. These errors were not observed in the four-sensor version of

the algorithm.

4294 J. Acoust. Soc. Am., Vol. 123, No. 6, June 2008
made. The four-sensor implementation was much less sus-
ceptible to these errors, illustrating the benefits of including
an additional two sensors in the array.

The proportion of front/back confusions in each SNR
condition is shown in Fig. 4. A front/back confusion occurred
when the estimated and actual locations of the sound source
were on opposite sides of the interaural axis. Two-
microphone systems that exclusively rely on time-of-arrival
differences will exhibit a 50% confusion rate. The inclusion
of the ILD and monaural cues in the cross-channel algorithm
led to a significant reduction in the number of confusions:
fewer than 5% of the trials resulted in confusions in the 40,
30, and 20 dB SNR conditions, and performance was well
above chance to −20 dB. As expected, the addition of two
microphones in the four-sensor implementation led to an in-
creased performance: confusions were reduced to a trivial
level �0.28%� at 10 dB and were entirely eliminated in the
20, 30, and 40 dB conditions.

V. DISCUSSION

These simulations demonstrate the extremely high accu-
racy that can be achieved with the cross-channel algorithm.
The two-microphone implementation exhibited a mean local-
ization error of less than 2° despite the addition of a moder-
ate amount of Gaussian noise. The accuracy of the algorithm
is especially impressive considering that sounds were al-
lowed to originate from the rear hemisphere, thereby allow-
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FIG. 2. Errors associated with the
best- and worst-localized sounds in
each SNR condition. The performance
of both algorithms tended to increase
with the bandwidth of the stimulus.
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ing for the possibility of front/back confusions. The inclusion
of frequency-based location cues allowed for a severe reduc-
tion in the number of front/back confusions. As expected, the
four-microphone implementation of the algorithm exhibited
an even better performance, committing almost no reversals
in all SNRs greater than 0 dB.

It is worth noting that the performance of the algorithm
depends on the transfer function of the structure to which the
microphones are mounted. Asymmetrical structures with
maximally separated microphone mounting points should
possess transfer functions that exhibit considerable variance
across sound source locations, thereby increasing the perfor-
mance of the algorithm. The KEMAR is likely to be a sub-
optimal choice in this regard: it is relatively symmetric with
respect to both the medial and interaural axes and there is
only a short distance between the mounting points for the
microphones. Despite this handicap, the KEMAR-based
implementation compares favorably to the large majority of
other localization algorithms, exhibiting a mean localization
error of 1.9 degrees in the 40 dB SNR condition when local-
izing ten different real-world sounds. In comparison, Ber-
dugo et al. �1999� reported errors of approximately five de-
grees in quiet when using an array of seven microphones to
localize a 20 s speech signal. Viera and Almeida �2003� re-
ported a mean localization error of approximately nine de-
grees when source locations were restricted to the front
hemisphere. Schauer and Gross �2001� observed a mean lo-
calization error of approximately ten degrees under the same
restriction. Zakarauskas and Cynader �1993� measured local-
ization errors between 0.29 and 25.4 degrees depending on
the stimulus being localized. Neti et al. �1992� reported a
mean localization error of 6.3° when source locations were
restricted to the range between −30° and +30°. The strongest
performance was reported by Lim and Duda, who observed a
0.8° mean error in azimuth when localizing an ideal broad-
band stimulus �an impulse� in anechoic conditions. The per-
formance of the algorithm in suboptimal �noisy� conditions
was not reported.

An analysis of the results of the two-microphone imple-
mentation of the algorithm can provide insight into the per-
formance of the human listener. By assuming that the KE-
MAR is an accurate model of the human head and torso, the
results of the simulation indicate that a highly accurate local-
ization performance is possible using information that is
available at the entrance to the ear canal. Accurate localiza-
tion is quite possible in noisy environments without previous
exposure to the stimulus. The inferior performance of the
human listener in these conditions must arise from the fol-
lowing: either the information available at the ear canal is
not available in the central nervous system where the loca-
tion estimate is made, or the decision process used to pro-
duce the location estimate is suboptimal, or �most likely�
both. The former possibility can be partially tested by filter-
ing the recording through a model of the auditory periphery
and by using the cross-channel algorithm to localize sounds
based on the output of the model.

It is clear that several questions remain to be answered
about the performance of the algorithm. As with all localiza-

tion algorithms, performance is likely to decrease in rever-
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berant environments. In addition, the performance of the al-
gorithm is unknown when the elevation of the sound source
is allowed to vary. It seems likely that the accuracy of eleva-
tion judgments would improve with the four-microphone
version of the algorithm, but that remains to be investigated.
An examination of the accuracy of the cross-channel algo-
rithm across elevations is currently underway. In addition,
localization accuracy in a multisound environment must be
investigated especially if the localization algorithm is to be
integrated into a CASA algorithm.

Both the inverse and cross-channel algorithms could be
altered in a variety of ways to determine if the accuracy of
the algorithm can be improved. For example, the Pearson
correlation is only one of the many possible similarity met-
rics that could be used in the inverse and cross-channel al-
gorithms. Several other metrics were considered during the
initial testing of the algorithms, including using the sum of
the squared deviations rather than the Pearson correlation. Of
the metrics considered, however, the Pearson correlation led
to the best localization performance in an initial test and was
therefore chosen for use in the subsequent full-scale evalua-
tion. In addition, the computational requirements of the al-
gorithm could be reduced using shortcuts to eliminate poten-
tial source locations. In a quiet environment, for example, all
locations in the right hemisphere could be eliminated as po-
tential source locations if the system determined that the
sound arrived at the left microphone before the right. Many
possible compromises between the two- and four-
microphone algorithm implementations are worth investigat-
ing as well. For example, the algorithm could use the left and
right channels to generate location estimates that are modi-
fied based on the relative intensity of the input to the front
and back microphones. In addition, the locations of the mi-
crophones were somewhat arbitrarily chosen; it is quite pos-
sible that other locations will lead to better performance.
Finally, it is likely that other mounting structures could be
found that introduce greater variation in the HRTF across
sound source locations, thereby increasing the performance
of the algorithm. Refinements such as these will be explored
in future work.
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