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Abstract. Experimental methods and statistics derived from signal 
detection theory are frequently used to compare two imaging tech­
niques. to predict human performance under different parameteriza­
tions of an imaging system, and to distinguish variables related to 
human visual perception from variables related to decision making. 
We review recent experimental results suggesting that the assump­
tions of signal detection theory are fundamentally unsound. Instead 
of shifting decision criteria under different priors. humans appear to 
alter the information assimilation process, representing images from 
categories with high prior probability more accurately (less variance) 
than images from categories with low priorprobability. If this hypoth­
esis is correct, detection theory measures such as d' and area un­
der the receiver operating characteristic may be misleading or in­
complete. We propose an alternative approach that can be used to 
quantify the effects of suboptimal decision making strategies without 
relying on a model of detection structure. © 2001 SPIE and IS&T. 
[001: 10.1117/1.1344188] 

1 Introduction 

A significant portion of the image quality issues encoun­
tered within the imaging sciences can be formally reduced 
to image classification problems of one kind or another. 
Some of the more conspicuous examples include medical 
imaging, product quality control. air traffic control, surveil­
lance, and image database design. Relatively few of these 
image classification systems are automated from start to 
finish-usually humans are involved at some point. It is not 
surprising therefore that models of human image perception 
and classification often play a role in the development of 
imaging techniques. In this paper. we discuss the merits 
and limitations of one of the most popular of these, the 
theory of signal detection (or signal detection theory).! Us­
ing examples from radiology, we show how the detection 
theory models have been applied in imaging studies to 
measure or predict human performance. We then review 
some recent findings that raise some doubts about their ba-
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sic validity and propose an alternative approach to mea­
surement that does not rely on any assumptions about the 
structure of human detection behavior. 

2 Statistical Decision Making in Medical Imaging 

Consider the following prototypical issues in radiographic 
imaging: (i) A high resolution x-ray image can be acquired 
using standard film-screen techniques or using newer digi­
tal equipment, such as storage phosphor or selenium­
detector based digital systems. Which imaging system con­
veys more relevant information about the patient's 
condition and what parameterizations of these systems are 
optimal?2 (ii) Film-based images can be viewed on a light­
box and digital images on a cathode ray tube monitor (soft­
copy viewing) or a film printer hardcopy. How does the 
viewing medium affect the image quality?3 (iii) Computer­
ized image enhancement, image reconstruction, and auto­
mated detection algorithms can provide additional informa­
tion about image properties, but may also bias or inteIfere 
with the radiologist's decision making process in some 
way. How do these computer-aided systems compare to 
unassisted diagnosis?4 

Several approaches to these measurement questions 
have been followed in the past. including visually compar­
ing examples of two image formats. calculating statistical 
criteria (e.g., mean squared error, detective quantum effi­
ciency, the peak signal-to-noise ratio), and recruiting radi­
ologists for clinical evaluation. Clinical tests have the ad­
vantage of being objective, reproducible. and directly 
related to the image's intended function (i.e., diagnosis). 
Because there is no guarantee that radiologists can accu­
rately predict their own performance with different imaging 
formats, the ideal clinical test is to simulate the diagnostic 
process so that performance can be compared under well­
defined conditions. Often, diagnosis is reduced to a binary 
judgment, such as the presence/absence of an abnormality 
(possibly in each region of an image). On each trial of the 
study an image from one of these two different populations 
is randomly sampled from a collection. 
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Table 1 Hypothetical two-by-two contingency tables for discrimina­
tion under two different imaging conditions. 

Method A Method S 

Response Response 
Q,j 

QAS NR AS NR 

ab 0.6 0.4 ab 0.7 0.3 
Input Input 

nr 0.3 0.7 nr 0.8 0.2 

Signal detection theory was developed to analyze and 
interpret data from these two-choice classification (yes-no 
detection) experiments. The radiologist's judgments are 
converted to frequencies or relative frequencies in a two­
by-two contingency table, as illustrated in Table 1. The 
rows of the table define the true condition, abnormal (ab) or 
normal (nr) and the columns define the judgment (AB or 
NR). The relative frequency of the AB judgment when an 
abnormality is present. freq[ab,AB]/(freq[ab,AB] 
+freq[ab,NR]), is the 'hit' or 'true positive' (tp) rate, and 
the relative frequency of this judgment when no abnormal­
ity exists, freq[nr,AB]I(freq[nr,AB] +freq[nr,NRJ) , is the 
'false alarm' or 'false positive' (fp) rate. Because the pro­
portions in each row of the table must add to 1, the other 
two cells (the "miss" or "false negative" and the "correct 
rejection" or "true negative") are redundant with the tp 
and fp rates and can therefore be ignored. 

If imaging method A is thought to be superior to method 
B, the tp rate would usually be expected to be higher and 
the fp rate lower for this method. However, it is not uncom­
mon to find that the tp and fp rates are both higher. Even if 
the increase in the tp rate is greater than the increase in the 
fp rate, it is not immediately obvious which method should 
be favored and it is also unclear what causes both the tp and 
fp rates to increase. In Table 1. the tp rate for method B 
(0.7) is only slightly larger than the tp rate for method A 
(0.6), but the fp rate is substantially larger (0.8 versus 0.3). 
Without additional information about the performance of 
these two diagnostic systems, it is impossible to determine 
which one would be superior in general practice. 

Estimating parameters from one of the signal detection 
theory family of models makes it possible to compare two 
methods and to explain why the tp and fp rates may in­
crease or decrease together. The models assume that the 
radiologist conve11s the information in the image to an 
"evidence value" on a bipolar continuum. Small (negative) 
values represent strong evidence for the normal (nr) and 
large values strong evidence for the abnOlmal (ab) condi­
tion. Somewhere between these two extremes is a cutoff 
between evidence states that will be mapped to AB re­
sponses and the states mapped to NR responses. Classifica­
tion errors occur when the evidence falls on the wrong side 
of this decision boundary or criterion. 

The relative frequencies of the outcomes, including the 
tp and fp rates, depend on the relative frequencies (the 
"base rates"') of the nr and ab conditions in the experiment 
(i.e., an experimenter-controlled variable) and the probabil­
ity distributions of the evidence states on nr and ab trials. 
When the distributions are assumed to be univariate Gauss­
ian with equal variance, the distance between their means, 

Decision Criterion 

....
'<ji­=

Evidence (x) 

Fig. 1 The equal variance Gaussian model of binary classification. 
The perceptual information extracted from the stimulus is converted 
to an evidence value, whose distribution mean depends on the 
population, normal (nr) or abnormal (ab) from which the image was 
sampled. The decision process is a threshold (Xc) set on the evi­
dence value. 

or d', is a convenient index of diagnostic sensitivity or 
power. Less restrictive models are possible, as are other 
choices of the distribution functions.1.5 The key idea behind 
all of these quantitative models is that the radiologist's be­
havior is analogous to a statistical hypothesis test: an infor­
mation sample is collected from the image (the percept) 
and converted to a test statistic (the subjective likelihood 
ratio), which is mapped to one of the two diagnoses (the 
decision rule). Surprisingly, there is reason to challenge the 
model even at this very general level. 

2.1 The Area Measure 

The equal variance Gaussian model is illustrated in Fig. 1. 
The criterion is displaced toward the side of the evidence 
scale favoring the AB response and the decision making 
strategy is therefore "biased" toward the NR judgment. 
The area under the ab distribution to the right of the crite­
rion is the tp rate and the area under the nr distribution to 
the right of the criterion is the fp rate. These two response 
probabilities increase or decrease together as the decision 
criterion is shifted, presumably showing why the tp and fp 
rates are sometimes positively covarying in empirical stud­
ies, and why they depend on the base rates. 

Calculating the tp and fp rates as the criterion is shifted 
across the range of evidence values and plotting one against 
the other produces the receiver operating characteristic 
(ROC) curve, which illustrates for a given subject the effect 
that different degrees of bias toward one of the two judg­
ments will have on overall performance. The area under 
this curve is equal to the probability that a random sample 
from the ab distribution will be greater than a sample from 
the nr distribution, making it a nonparametric index of the 
overlap between the two distributions, and therefore an in­
dex of diagnosticity.6 

2.2 Validity of the Model 

The parametric index d' (defined as the distance between 
the means of two equal variance Gaussian distributions), 
the nonparametric area index, and other measures associ­
ated with signal detection theory all depend critically on the 
concept of an invariant encoding process with some fixed 
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noise level (sensitivity) and a variable detection criterion. 
As the decision maker's preference for a given judgment 
increases, for whatever reason, the set of evidence states 
mapped to this judgment increases, at the expense of the set 
mapped to the other judgment. The evidence accumulation 
(encoding) process, on the other hand, is assumed to be 
unaffected by these response preferences (sensitivity is un­
affected by bias). Other kinds of decision making biases 
can be envisioned, and some of these could have substantial 
effects on the detection theory measures even when diag­
nostic power is constant. For example, biases may affect 
the amount of time that an observer spends assimilating 
information from an image or accessing relevant informa­
tion from memory. Detection theory would generally mis­
take these kinds of biases for sensitivity effects. 

In some decision making contexts the decision criteria 
are inherent and directly observable properties of the sys­
tem. Automated detection systems, for example, typically 
convert the information from an image to a likelihood ratio 
test statistic that is thresholded at different values depend­
ing on a loss function or a desired fp rate. The computation 
of the likelihood statistic is unaffected by the choice of 
threshold and the decision process is a mapping of evidence 
values to judgments, as in detection theory. 

When radiologists and other human experts make deci­
sions about the information contained in images, there is no 
empirically observable evidence state and therefore no veri­
fiable shift in a decision criterion. The popularity of signal 
detection theory is derived from indirect evidence for this 
effect, such as the positive covariance of tp and fp rates in 
laboratory studies when the base rates of the conditions are 
manipulated by the experimenter and the fact that sensitiv­
ity indices under these different biasing conditions are usu­
ally roughly constant'? If sensitivity and bias are not inde­
pendent, it is not clear why 'pure' bias manipulations 
should have little or no effect on sensitivity measures. 

3	 Model-Independent Tests of Decision Rule 
Bias 

Perhaps because experimental data seemed to confirm a 
model that was highly plausible to begin with, detection 
theorists appear to have overlooked a relatively straightfor­
ward, assumption-free empirical test of the criterion shift 
concept that follows directly from basic concepts of statis­
tics and probability theory. To illustrate this, consider once 
more the two density functions,fabe x) and f nrC x), in Fig. I 
and notice that when the detection criterion is shifted to the 
right of the evidence scale, there is a region of evidence 
values mapped to the NR response for which fab(X) 
>fnr(x), If the criterion is placed at the (single) point of 
intersection between the two distributions, then no such 
"biased response region" exists. More generally, the deci­
sion rule is unbiased if and only if 

for all x mapped to the NR response, and 

for all x mapped to the AB response. 
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Now consider once more the example in Table I and 
suppose that the proportions in the cells are the true 
response probabilities. For detection method B, the condi­
tional probability of the NR judgment on nr trials, 
peR == NRI nr) == 0.2, is less than the conditional probability 
of this judgment on ab trials, peR == NRI ab) == 0.3. It is easy 
to show that if the decision rule is unbiased, then for any 
pair of distributions describing the evidence states, 

peR == NRlnr) >p(R==NR!ab), 

and 

peR == ABlab) > peR == ABlnr), 

Empirical results similar to those in Table I would there­
fore confirm unequivocally that the method B decision rule 
is biased. 

To our knowledge, no such results have ever been re­
ported in the human performance literature or in medical 
diagnosis, even though it is usually taken for granted that 
the decision rule is biased (the decision criterion is assumed 
to shift and a set of biased information states is therefore 
presumed to exist). In sensory discrimination experiments 
performed in our laboratory, this sufficient condition was 
never satisfied even when the base rate difference was rela­
tively large (i.e., 9 to 1).8,9 This fact by itself, however, 
would not be a sufficient reason to doubt the validity of 
detection theory. Even if the decision rule is strongly biased 
toward the NR response, the observable probabilities, 
p(R==NRlnr) and peR == NRlab), will still be composed of 
probabilities taken over both biased and unbiased evidence 
states. That is, 

p(R==NRlnr) == p(x<Xclnr) 

== p(x E uNRlnr) +p(x E bNRlnr) 

and 

peR ==NRlab) == p(x<Xclab) 

== p(x E uNRlab) +p(x E bNRlab), 

where Xc is the decision criterion, U NR is the subset of 
evidence states mapped to the NR response for which 
fnr(x)"?-fab(X,) and b NR is the subset of these NR response 
states for which f nr(X)";fab(X), If the decision rule is un­
biased or biased only toward the AB judgment, then b NR 
is an empty set and (R==NRlnr) must be greater than 
p(R==NR!ab). If the decision is biased toward the NR 
judgment, then p(x E bNRlnr) is nonzero and less than 
p(x E bNR11ab), but p(x E unrlnr) will always be greater than 
p(xEunrlab). In order for the bias to be detected from 
these statistics, the biased response region bNR would have 
to be quite large. 

To avoid this averaging-out problem, the decision mak­
er's judgments need to be broken down into small enough 
subsets of evidence states to detect the biased region near 
the criterion. The sufficient condition for a biased decision 
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rule can then be applied to each of these. That is, if the 
decision rule is unbiased, then for any subset of evidence 
states v mapped to an NR response 

p(X E V Inr)~p(x E v lab), 

and for any subset w mapped to an AB response, 

p(x E wlab)~p(x Ewlnr). 

The only question is how to divide the subject's classifica­
tion judgments into sufficiently small subsets of these (or­
dered) evidence states. 

Fortunately, signal detection theory tells us not only 
what this decomposition rule should be, but also which of 
these subgroups should satisfy the condition for bias when 
a decision rule bias exists. According to the theory, the 
evidence axis is a bipolar continuum of subjective likeli­
hood ratios, ranging from high confidence NR judgments to 
high confidence AB judgments. The criterion is set at the 
point of "indifference," or "least subjective certainty," in 
the accuracy of the judgment (or zero expected gain). In 
other words, the judgments given with low confidence are 
evidence states near the decision criterion and judgments 
given with high confidence are evidence states far from the 
criterion. In Fig. I, the biased response region is immedi­
ately to the left of the criterion. Therefore, sufficiently low 
confidence NR judgments should satisfy the test for bias. 
All other states, including low confidence AB judgments, 
should fail this test. 

4 Experimental Design Issues 

In principle, asking subjects to give an estimate of the prob­
ability that their judgment will be correct (i.e., a subjective 
probability judgment on a continuous scale from 0 to I) or 
an integer rating response on a scale with many levels 
should be enough to partition their classification judgments 
into sufficiently small sets of evidence states. In practice, 
however, subjects could simply ignore many levels of the 
probability scale or use large intervals to define some rating 
responses and small intervals to define others. This compli­
ance issue is illustrated in Fig. 2. In addition to the critical 
decision criterion, other criteria are placed on the evidence 
scale to map internal confidence states to physically execut­
able rating responses and the spacing between these criteria 
varies. Each response bin defines one of eight rating re­
sponses on a bipolar scale. Response R =4 is the lowest 
confidence NR response and response R =5 is the lowest 
confidence AB response. 

When the spacing between two adjacent criteria, Ci- I 

and C i , is large, the empirical likelihood ratio for the cor­
responding rating response, p(R= jlnr)/p(R= jlab), may 
not detect a biased response region contained within the 
interval. In Fig. 2, the spacing between the decision crite­
rion and the criterion immediately to its left (i.e., the R 
=4, or "lowest confidence NR," response bin) is large, 
causing the ratio p(R=4Inr)/p(R=4Iab) to be less than I 
despite the bias toward the NR response. When the re­
sponse bin for rating response j is large, however, the rela­
tive frequency of response j is also large. Thus, subjects 
can be instructed to be conservative about using the lowest 

Decision Criterion 

Rating 

t Biased 
Evidence (x) Response Region 

Fig. 2 Illustration of the effects of criteria placement on the test for 
bias in the decision rule. Internal confidence is mapped to rating 
responses by dividing the subjective confidence scale into response 
bins using additional criteria. Large spacing between the third and 
fourth criterion (the decision criterion) causes the proportion of 
"four" responses (lowest confidence NR) to be greater on nr trials, 
even though the ab density function is higher than the nr density 
function in part of this response bin. In such a case, the total pro­
portion of four responses is also large (larger than the proportion of 
trials on which the evidence value falls in the biased response re­
gion). 

confidence judgments (i.e., to use these responses only 
when they are extremely uncertain), in effect encouraging 
them to use small spacing of criteria adjacent to the deci­
sion criterion. If the instruction fails, the test is weak, but 
the weakness will be evident in the observed proportion of 
lowest confidence judgments (which will be large). In fact, 
because the criterion shift construct also predicts that the 
biased region, when it exists, will lie immediately to the left 
or right of the detection criterion, depending on the direc­
tion of the bias (see Fig. 1), the proportion of the lowest 
confidence NR responses is an upper bound on the propor­
tion of biased NR responses, and the proportion of lowest 
confidence AB responses is an upper bound on the propor­
tion of biased AB responses. If the test for bias fails for all 
rating responses and these two proportions are small, the 
bias must be small as well. 

5 Experimental Results 

Applications of these empirical tests to data from various 
kinds of perceptual discrimination tasks consistently lead to 
the same conclusion: the decision rule is either unbiased or 
is biased to a trivially small degree, even under strong bias 
manipulations (e.g., a base rate ratio of 9 to 1). Represen­
tative results from a visual shape discrimination experiment 
are shown in Fig. 3.8 Subjects were asked to discriminate 
two L-shaped figures varying in size and to indicate how 
confident they were on a 14-point bipolar scale (seven lev­
els of confidence for a given response). The test for bias 
failed for all confidence judgments, even when the base 
rates were unequal, and the proportion of lowest confidence 
responses (the upper bound on the proportion of biased 
responses) was very small (less than I%). 

5.1 Suboptimafity of the Decision Rule 

Using the same experimental methods-i.e., the rating pro­
cedure with special instructions about the relative fre­
quency of extreme rating responses-it is also possible to 
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Fig. 3 The log likelihood ratio, 10g[p(R=J1nr)/p(R=jlab)], for each 
rating response in the equal and unequal (Pnr=0.9) base rate con­
ditions of a visual size discrimination task with a 14-point bipolar 
confidence rating response procedure. Rating responses 7 and 8 
were the lowest confidence NR and lowest confidence AS judg­
ments, respectively. The functions are positive when j,,;;7 (NR judg­
ments) and negative when /:;;,8 (AS judgments), suggesting that the 
decision rule is unbiased. 

test for suboptimality of the decision rule, where the term 
optimal is defined with respect to the probability of a cor­
rect diagnosis or with respect to any other objective loss 
function. Consider once more the detection model in Fig. 1 
and suppose that the base rate of the nr condition is five 
times greater than the base rate of the ab condition, p(nr) 
=5p(ab)=5/6. The placement of the criterion in the ex­
ample is biased toward the NR judgment, but not enough to 
maximize the probability of a con-ect judgment under these 
base rate conditions. The optimal location occurs at the 
point where the ratio of the ab density function to the nr 
density function is equal to the ratio of the base rates, or 5 
to 1. The ratio at the decision criterion in the example is 
roughly 2 to 1. 

This "conservative" displacement of the criterion is 
supposedly a strong regularity of human decision making. 
Presumably because they tend to underestimate or under­
weight base rate differences or payoff asymmetries, sub­
jects do not shift their criteria enough to maximize their 
performance. The decision rule in Fig. 1 is suboptimal for 
accuracy because of the mapping rule immediately to the 
right of the detection criterion. For these evidence states, 
the posterior probability of the nr condition 

f nix)p(nr) 
p ( nrl x) = f--'--nr-:(-:x)-p---'-(n-r:-)+-.--'--ra-b('--X'--)p-:(-:ab7) 

is higher than the posterior probability of the ab condition 

RespondNR Respond AB 

• Respond nr 0 Respond ab 

--- • • ••••."
II oo"~Qo ••0.8 08 

00c:e: .... 
e.• 0.' 

V \)-~ 0.4I..i 0.4 Oo
 
'"o
 o 

Equal 0'U 02 Unequal 
'-' Base Rates Base Rates l:l.. 

1234507 1234567 
low high low high 

Confidence Level (j ) Confidence Level (j ) 

Fig. 4 Percent correct conditioned on the degree of confidence 
(seven levels) in the size discrimination experiment for the equal 
and unequal (Pnr=0.9) base rate conditions. Values less than 0.5 
(left panel, low confidence AS judgments) indicate that the decision 
rule is suboptimal. 

fab(x)p(ab) 
p(ablx) = f nr(x)p(nr) +fab(X)P( ab) = 1-p(nrlx). 

Since p(nrlx) +p(ablx) = 1, the inequality p(nrlx) 
<p(ablx) implies that p(nrlx) must be less than one half. 
A probability correct score less than one half for any con­
fidence rating therefore immediately implies that the sub­
ject's decision rule is suboptimal for accuracy. 

Assuming that human observers used unbiased decision 
rules in the perceptual discrimination experiment cited ear­
lier, as the results of the bias test suggested, this test for 
suboptimality should be satisfied for low confidence B 
judgments when the base rates were unequal. Percent cor­
rect scores for each confidence rating response are shown 
in Fig. 4. Notice that in the unequal base rate condition, 
several of the lower confidence B judgments were in fact 
incorrect more often than they were correct. indicating that 
the decision rule was suboptimal. This result is important 
because it shows that rating data can be used to identify 
properties of the decision rule on one side of the decision 
criterion (in this case, on the right). It is difficult to main­
tain, therefore, that the criterion shift concept of detection 
theory is valid but that confidence rating data are somehow 
contaminated or for some other reason uninformative about 
decision making biases. 

5.2 The Adaptive Filter Model 

The rating paradigm was originally developed by Swets to 
estimate ROC curves using data from a single base rate 
condition. I Assuming that rating judgments are monotoni­
cally related to internal confidence, as in the Fig. 2 model, 
the cumulative distribution functions of the rating judg­
ments on nr and ab trials are equal to the cumulative dis­
tributions of the evidence states at the upper bounds of the 
rating response bins (the C). Therefore, plotting the survi­
vor function (one minus the cumulative distribution func­
tion) for ab trials against the survivor function for nr trials 
yields a rating ROC curve. Examples from the equal and 
unequal base rate conditions of the size discrimination ex­
periment are shown in Fig. 5. Because the two conditions 
differed only in the base rates of the stimuli, signal detec­
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Fig. 5 Rating ROC curves for the size discrimination experiment. 
Signal detection theory predicts that the two curves should coincide. 
In the unequal base rate condition, the functions are skewed with 
respect to the negative diagonal, suggesting larger variance of the 
ab distribution. 

tion theory would predict that the two curves should be 
identical (the criteria in Fig. 2 should shift with the base 
rates, but the distributions should remain the same). In­
stead, these curves are clearly different. When the ab base 
rate is low, the function is noticeably skewed with respect 
to the negative diagonal. The direction of the skew and its 
dependence on the base rates suggests the distribution 
model shown in Fig. 6. The density function associated 
with the more frequent stimulus has less variance than the 
function associated with the less frequent stimulus. In order 
to be consistent with the results of the bias and suboptimal­
ity tests, the decision criterion is placed at the point of 
intersection between the two distributions. 

Effects of base rates on the shapes of the distributions 
may be taken as evidence against signal detection theory's 
assumption that human decision makers are "passive re-

Unequal 

Equal
 
Base Rates
 

Unequal
 
B~se Rutes
 

ceptors" of external world images. Recognizing that per­
ception requires action on the part of human observers, 
there are in fact many reasons to expect that the informa­
tion collected from an image should depend on decision 
making biases. Unlike the automated detector, humans 
must make a number of decisions about which areas of an 
image to scrutinize, how to "focus" the sensors (focusing 
the gaze in visual image processing), and for how long. 
Detection theory ignores these "control" aspects of the 
human perception process. It is not unreasonable to sup­
pose that expectations about what an image will contain 
and other decision making variables of this kind may effect 
these control processes in nontrivial ways. If so, the mea­
surement of human diagnostic skill and its relationship to 
an image format must account for these additional vari­
ables. 

5.3 Applications to Image Processing 

Empirical violations of the detection theory class of models 
could of course be specific to visual perceptual discrimina­
tion tasks, in which physical stimulus noise is minimal and 
presumably internal noise is therefore the main limiting 
factor. In medical imaging, physical noise is also a con­
spicuous factor and its presence may alter the nature of the 
detection process. Diagnosticians are also trained over pro­
longed periods of time and this experience may enable 
them to profit from both the encoding effects exhibited in 
perceptual discrimination and the adjustment of their deci­
sion rules. Even if there is no pmticular reason to expect the 
detection models to work in some settings but not in others, 
its validity should be established or disconfirmed in each 
individual area, including medical diagnosis. The ideal 
method is to replace the "yes-no" response procedure of 
the detection theory paradigm with a bipolar rating scale 
running from high confidence NR judgments to high con­
fidence AB judgments. An explicit cutoff between NR and 
AB judgments should be defined in the middle of the scale. 
For example, using a ten-point bipolar scale, the descend­
ing integers from 5 to 1 on the left of the response box 
would be the high to low confidence NR responses and the 
ascending integers from 1 to 5 on the right of the box' 
would be the low to high confidence AB responses. This 
procedure has the advantage of forcing the subject to make 
both the classification judgment and the confidence rating 
simultaneously, avoiding the possibility that the subject has 
more (or less) information at the time of the rating re­
sponse. If the decision rule is unbiased, sample sizes in the 
study will need to be large enough to show that the relative 
frequency of lowest confidence NR judgments on nr trials 
(which will be small) is larger than the relative frequency 
of lowest confidence NR judgments on ab trials. Detection 
theorists often promote the detection models by pointing 
out that d I and other parameters of the model can be esti­
mated without confidence rating data and with relatively 
smaller sample sizes. It is important to remember, however, 
that if the model is invalid, none of these conveniences 
should be enough to justify its application. 

Evidence (x) 6 A Model-Free Approach to Image Quality 
Assessment 

Fig. 6 A distribution model consistent with the results of the bias 
Although not as popular as detection theory, other quanti­and optimality tests and the rating ROC curves from the size dis­


crimination experiment. tative models of classification have been developed that can
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Sequential Sampling Models 

• 
• Respond A 

S,art -i+----- _!_ + _ 
Pomt • • 

. ---4 Respond B 
Time 

Fig. 7 The sequential sampling models of two-choice classification. 
The trial begins with the presentation of the image and ends when 
the decision maker decides that the information collected from the 
image is strong enough in favor of one of the two judgments to 
warrant a response. 

allow for some of these more complex effects of decision 
making biases on human performance. The so-called "se­
quential sampling" models, for example, explicitly define 
the' 'stopping rule" used by the subject to determine when 
the information assimilation process should be 
terminated. 1O

•
11 This class of models is illustrated in Fig. 7. 

The information assimilation process starts with the presen­
tation of the image, which initiates a stochastic process that 
drifts toward one of two "absorption boundaries." The in­
formation accumulation process ceases when its value is 
larger than the positive boundary or smaller than the nega­
tive one, and the decision maker's response depends en­
tirely on the sign of the process at the point of termination 
(i.e., which boundary was crossed). 

Models of this kind can fit all of the data typically asso­
ciated with signal detection theory, including the ROC 
curves, as well as other results, such as the decision times. 10 
Unfortunately, they have more free parameters and param­
eter optimization can be difficult. Moreover, like signal de­
tection theory, they also depend on some "technical" as­
sumptions (e.g., the drift distributions, discrete versus 
continuous representation of state and time. and the form of 
the absorbing boundary functions). An alternative approach 
that does not require these modeling assumptions or model 
fitting is to employ the ratings technique described above 
and perform the optimality test illustrated in Fig. 4 on the 
results. Confidence rating procedures add little or no extra 
costs in time or effort, are already used in some areas of 
medical imaging research (for a recent example. see Leich­
ter et at. 12), and greatly increase the range of hypotheses 
that can be tested from the data. 

The main reason to perform the optimality test defined 
above is the following: When the base rates were equal in 
the perceptual discrimination experiments, the function re­
lating percent correct to confidence level in an NR response 
coincided with the function relating percent correct to con­
fidence level in an AB response, and the decision rule (cri­
terion placement) was optimal. Presumably, decision mak­
ing biases were not limiting the performance of subjects 
when these two functions were "calibrated" in this sense 
(i.e., when percent correct at any given degree of confi­
dence does not depend on which judgment, AB or NR, is 
given).13 However, when the base rates were unequal, the 

two precent correct functions diverged and the decision rule 
was clearly suboptimal (even though the encoding process 
was apparently "adaptive," in the manner illustrated in 
Fig. 6). The degree of separation between these two percent 
correct functions can therefore be taken as a qualitative 
index of the degree to which the decision making processes 
limit discrimination performance. 

When these tests are applied to results from two differ­
ent imaging conditions (with identical base rates and pay­
offs), the percent correct functions would ideally be cali­
brated, and in this case the overall percent correct score 
would be a reasonable index of perceptual information con­
tent. If they are miscalibrated. the ideal solution would be 
to give the subjects feedback about this effect and train 
them to correct it. That is. in addition to feedback about 
whether the decision was correct or incorrect at the end of 
a trial, the experimenter may also give the subjects access 
to a running tally of their percent correct scores for each 
confidence level by response (i.e., the same information 
shown in Fig. 4) and ask them to calibrate these two func­
tions. This self-correction process will obviously take time 
and may not always be feasible. However, in addition to a 
more credible final result, the method would also provide 
an opportunity to study the learning process and to deter­
mine why the subjects were miscalibrated initially, which 
may have important implications for image processing 
theory. 

7 Implications and Some Recent Applications 

Although it is possible that visual discrimination is not a 
good predictor of human behavior in other kinds of dis­
crimination tasks. the fact that signal detection theory has 
been just as "successful" in other areas as it has been in 
visual discrimination may be an indication that it is invalid 
in many areas, for similar reasons. Taking this contrary 
position for granted. in this section we briefly discuss some 
recent applications of detection theory in imaging research 
and consider how the conclusions of these studies might or 
might not be affected. 

7.1	 Ideal Observer Models and Objective (Task-
Based) Image Quality Assessment 

Whatever method is used to acquire it, the information in a 
medical image is finite and time-invariant. Objective indi­
ces of image content, or figures of merit, can be defined by 
specifying in as much detail as possible the physical prop­
erties of a population of images and identifying a transfor­
mation (the response function) and decision rule that can be 
applied to these response functions to perform a given clas­
sification task. In this vein, Eckstein et at. 14 have recently 
shown how correlations among Gaussian distributed pixel 
luminance values change the function relating d / (the as­
sumed difference in the mean pixel luminance for signal 
versus nonsignal pixel intensities) to the percent correct of 
a signal detector in an n-altemative forced choice detection 
task (the signal always occurs in one and only one of 11 

locations). This corrected d / is a possible figure of merit 
for signal detectability. 

Since an accurate distribution model would lead to ac­
curate estimates of criterion placement, and the Gaussian 
model apparently failed in this respect, this particular 
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model cannot be an ideal choice for defining figures of 
merit. The fact that adding correlations that exist in an im­
age to a statistical decision model leads to better prediction 
of human performance suggests neveltheless that humans 
are affected by these correlations as well. Barrett et al. 15 

point out that normality is not necessarily a property to be 
expected of real world images and that even if normality is 
true of the image in some sense, it can easily be lost in the 
distribution of the likelihood statistic of an ideal observer. 
In this respect, the area under the ROC curve might be a 
better figure of merit for measures of image quality tied to 
ideal observers. An ideal observer would not exhibit, how­
ever, any effects of base rates on the evidence distributions 
(the distribution of the test statistic would be equivalent 
under some monotone transformation and therefore the 
ROC curves would be the same). Perhaps the simplest way 
to reproduce this property of human observers is to assume 
that image sampling time is an important factor for humans, 
even if this attitude is not rational from the point of view of 
the experimenter. As noted earlier, changes in the stopping 
rule of a dynamic system (the distances to the absorbing 
boundaries) can have arbitrarily strong effects on the de­
tectability of a signal and therefore on the distribution of 
evidence (in this context. evidence is the information avail­
able at the point at which the sampling process is tenni­
nated, or in other words, the posterior likelihood of an en­

7tire sample path I6.l ). Another possibility is that some 
aspect of the human image transduction process makes it 
advantageous to alter the nature of the image transforma­
tion depending on the most likely condition of the image. 

7.2 Effects of System Versus Anatomical Noise 

In some areas of radiology, the difference between signal 
and noise is problem dependent: anatomical features that 
are irrelevant to one kind of diagnosis may be critical to the 
diagnosis of another kind. 18

,19 This anatomical (or patient 
structured) noise almost surely needs to be treated differ­
ently from acquisition or system noise. Bochud et al. 18 

have recently developed a method of quantifying the differ­
ent effects of system and anatomical noise by comparing 
human performance to the performance of a detection 
model (the nonprewhitening matched-filter observer with 
an eye filter) when the anatomy is assumed known (and 
hence removed) or unknown (and hence acts as noise). In­
stead of the yes-no detection task, they employed the two­
alternative forced choice (2AFC) design, under the assump­
tion that percent correct in this design is equal to the area 
under the ROC curve in the yes-no detection task.6 Images 
were simulated with different degrees of anatomical varia­
tions and three different signal profiles. tumor nodules, 
spherical, and cubical microcalcifications. Comparing hu­
man performance to the model' s predictions with anatomy 
known and anatomy unknown, the authors found that the 
influence of anatomic noise depends strongly on the signal 
profile. Increasing anatomical noise from small to moderate 
levels had a more substantial impact on the detection of 
cubic microcalcifications than on nodule detection (see Fig. 
4 in Bochud et at.) 

Percent correct in the 2AFC paradigm may be a reason­
able index of detectability, even if the experiment is not a 
realistic representation of clinical diagnosis. However. the 
relationship between human yes-no and human 2AFC 

(Green's area theorem) is lost if the criterion shift construct 
is invalid. For each base rate pair, there is a different pair of 
empirical distributions (see Fig. 5) and hence a different 
ROC curve, with potentially different area underneath it. 
Estimating the tp and fp rates under different base rate ra­
tios defines yet another ROC curve, whose area mayor 
may not equal the human subject's percent correct score in 
the 2AFC design. It seems unlikely that the area index 
would vary dramatically under different base rates, and 
there is no specific reason to doubt the conclusions of Bo­
chud et al. 's study. However, until the effect of base rates 
on area is identified for problems involving expert diagno­
sis, there is some risk in assuming that the important prop­
erties of human diagnosis under different base rate condi­
tions can be inferred accurately from behavior in the 2AFC 
condition. 

7.3 Computer-Aided Diagnosis 

An area in which accurate models of human decision mak­
ing biases may be especially fruitful is computer-aided di­
agnosis (CAD). Reconstruction and detection algorithms 
can potentially identify image features not easily discrimi­
nated by the human visual system20 and can also provide a 
"second opinion" with an explicit quantitative basis. It is 
important to understand, however, how information from 
an automated system will be combined with the radiolo­
gist's conventional approach to diagnosis. 

In a recent stud~ comparing CAD to unassisted diagno­
sis, Leichter et al. L used image enchancement and comput­
erized extraction of quantitative features (spiculations) to 
help radiologists visualize and interpret lesions in a digi­
tized mammograph. Participants in the study sorted images 
into one of five ordered categories on a bipolar scale: nor­
mal, benign, probably benign, suspicious abnormality, and 
highly suggestive of malignancy. The fp rates in the two 
conditions were equal, however the tp rates were larger and 
the ROC curves were clearly ordered. 

From a strict detection theory point of view, a "second 
opinion" from a statistical algorithm should only affect the 
criterion set on the information that the observer has ex­
tracted from the image. The "sensitivity effect" of CAD 
suggests that the system either provides new information 
not readily accessible to the radiologist or changes the way 
the radiologist processes the image. It seems likely that the 
time to diagnose was longer in the CAD condition, which 
could reflect either of these two factors, assimilation of new 
information from the computer. or spending more time ex­
amining regions of the image due to the feedback from the 
CAD. CAD systems might also have an effect on the radi­
ologists memory for specific details, or the relative weights 
assigned to different image properties prior to formulating 
an opinion. All of these effects would constitute changes in 
the radiologist's computation of the test statistic, leading to 
changes in sensitivity and in the shape of the rating ROC 
curve. 

It is not clear what effect a manipulation of the base 
rates would have had on this curve. However, one interest­
ing possibility is that receiving information from the CAD 
system favoring a given judgment could have the same ef­
fect that base rates appear to have in visual perceptual dis­
crimination, changing the relative variances of the distribu­
tions of evidence effects. In other words, Fig. 6 could be a 
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model for experimental trials when the output of the CAD 
system suggests that the image is normal (and the opposite 
variance tradeoff might occur when the system information 
suggests that the image is abnormal). If so, then the deci­
sion rule is suboptimal and feedback training (recalibration) 
may be needed to maximize the benefits of the CAD. 

8	 Conclusions 

Automatic detection algorithms typically convert the inten­
sity values of a digital image into a test statistic that is 
assumed or known to be monotonically related to the ob­
jective posterior likelihood of the signal. A threshold on 
this value maximizes accuracy for some pair of signal and 
noise priors, and the ROC curve generated by varying the 
threshold is a precise and unambiguous measure of the ef­
ficiency of the detector. If signal detection theory's as­
sumption that human classification can be adequately mod­
eled using a similar two-step process is not tenable, as we 
have argued, the significance of human ROC curves and 
other statistics derived from signal detection theory is more 
difficult to specify. Because they do not rely on a model of 
the detection process, interpretation of the tests that we 
have defined on confidence ratings is less problematic. For 
example, if the test for suboptimality is satisfied, then under 
some conditions (e.g., when the subject would normally 
respond to AB with low confidence), the subject should 
select the alternative response. Training them to recalibrate 
their subjective confidence states guarantees that accuracy 
will improve and may also eliminate other suboptimal 
properties of the decision making strategy. A reasonable 
working hypothesis is that subjects that use optimal and 
calibrated decision rules in the sense defined here are maxi­
mizing their performance levels. In such a case, percent 
correct of these subjects may be the most appropriate index 
of image content. 
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