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1. INTRODUCTION

In Signal Detection Theory, we discussed the rational and the basic
concepts behind the “formal model” approach to human
performance assessment and then briefly sketched out the
assumptions and methods associated with the fields most popular
formal measurement system, signal detection theory. Over the
past several decades, the experimental methods and statistics
associated with the signal detection theory framework have
become so deeply ensconced in the measurement literature that
relatively few theorists would see any serious reason to question
them. Competing views have also been developed, however, and
should not be ignored merely because they are less familiar. After
all, the validity of signal detection theory has never been
established, and from time to time some cracks in its foundation
have been discovered. In fact, here we review some very recent
empirical results that purportedly show that the signal detection
theory measures have actually grossly misled human factors
researchers about the nature and limits of human performance.
First we review the experimental data that make signal detection
theory seem so compelling and then consider the strength of this
evidence and some alternative interpretations.

2. EVIDENCE IN SUPPORT OF SIGNAL
DETECTION THEORY

For most human performance researchers, the important question
about signal detection theory is not whether it is 2 valid theory
or not, but whether it is valid enough for their purposes. Typically,
the performance statistics are recruited to identify changes in
sensitivity and response bias, not their absolute values. The signal
detection theory measures are trusted in this role because the
way they change under different experimental conditions is
usually predictable and consistent with the theory. Most
importantly, perhaps, the theory correctly predicts the effects of
changing the base rates or payoffs in a yes—no detection task:
increasing the frequency of the signal trials almost invariably
increases both the hit and the false alarm rates. Stronger
manipulations lead to stronger effects of the same kind. Similarly,
the sensitivity indices (e.g. d” and area under the ROC curve)
seem relatively unaffected by base rates and payoffs, while the
bias measure b is not: it increases and decrea
when the base rates or payoffs are manipulated indicating that
the operators decision-making strategy is rational. Qther kinds
of evidence seem o Justify the ‘technical” assumptions of the
theory while rejecting the underlying assumptions of many other
statistics (Swets 1986bh). Empirical z-ROC curves, for example,
usually are almost perfectly linear, consistent with the
distributional assumptions (normality) of signal detection theory,

Using these statistics for more fine-grained analyses of operator
performance also leads to a plausibl

. e and cohesive account of
human behavior. For example, stud

ies have consistently shown

that the operator shifts the detection criterion when the e Tales
are changed, but the size of the shift is presumably insufficien; o
cause the decision process to be “optimal” (i.e. to maximize ghe
percentage of correct decisions). In other words, the decision
process is “conservative” (e.g. Creelman and Donaldson 1968,
Macmillan and Creelman 1990). In laboratory studies of
watchkeeping (i.e. the vigilance paradigm), the measures haye been
used to “establish” that changes in the detection rate are due to
changes in the operators willingness to make a detection response
under some conditions (e.g. relatively slow paced detection tasks)
and losses of sensitivity under others (e.g. relatively fast paced
detection tasks with a memory load; Parasuraman 1979). These
accounts are interesting and plausible, and certainly do not raise
any special concerns about the validity of the model that gives rise
to them, even though it could easily have been otherwise. If the
model was untenable, one might expect a more inconsistent or a
more confusing pattern of results.

3. ALTERNATIVE INTERPRETATIONS OF THE
DATA

Although the classical findings undoubtedly do tell us something
important about human performance, they can also be interpreted
in other ways, some of which are at least as plausible as the signal
detection theory explanation. Response time models, for example,
can reproduce all of these properties of the data, even though
they represent the decision-making processes in a profoundly
different manner (e.g. Townsend and Ashby 1983, Luce 1986).
Instead of adjusting a detection criterion, these models assume
that the operator accumulates information until enough evidence
has been collected to justify one of the two possible responses.
Because the decision is reached only after the accumulated
information crosses a boundary, the number of samples (the
encoding time) will depend on the quality or strength of the
evidence as it is collected. If the operator receives weak
information early on, for example, s/he will wait longer before
responding so that additional information can be obtained. In
signal detection theory, the decision-making process 0@1/ P]"YS
arole after the encoding process is completed. Thus, this e
model assumes that the amount of information collected isentifely
independent of the information quality.

In some circumstances, such as clinical or medical diag:lOSCfr
the “fixed sample” assumption of signal detection thEOTY‘S[
reasonable, or perhaps even necessarily true if the amoumd o
physical evidence available to the decision-maker is not under
the decision-maker’s control. In many other situations, howeve:
the decision to stop collecting new information and lfom”hk:
fesponse is a crucial aspect of the operators decision-ma rlg
process, which may itself be biased in some way: In the real 0 :
detection problems associated with watchkeeping, for examp
the operator must respond quickly as well as accurately 0 Chéigﬁ
in the status of the system. Attempting to decide more qmwi
whether a signal or a non-signal event has taken Pla‘:;cso_
generally increase both the false alarm and the miss rate { <t
called “speed-accuracy trade-off”), causing d’ to def;reascw e
biases might show up in mean response times of the oper
in the estimates of the parameters of a dynamic model, bt ween
be invisible to signal detection theory. The difference bet¥e
tasks that lend themselves to a signal detection theory a7~
and those that do not is not always recognized: many
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linear z-ROC curves.

:15@ d or similar measures even when the operators are under
Ime pressure.

assu;hpi-l;:d?nhce 'PurporleQIy supporting the normality
of the e ir'o- Ll e signal dElECUDﬁ theory model —i.e. the shape
dislribunolj] oy dROC CU!.’Ve —‘15 also very weak. Many other
B e SmairZ]O f-ls> predict a‘v:rtually linear z-ROC curve. In
el actually | eviations from linearity in empirical z-ROC curves
ahef“ﬁ‘tived}i;;ge.r than the deviations predicted by‘lhesc
of two other d“ ‘_‘“C‘n.s. Examples of the z-ROC curve predictions
5 ity istributions, vastly different from the normal (and

mable to the normal”), are shown in Figure 2.

:' OTHER APPROACHES

mp:irl &{) m the response time models, very few of the alternatives

Spec?;im detection theory were specifically developed to repair any
¢ or known deficiencies of d'. Instead, they were proposed as

alternatives that might be more reliable if complete list of these

indices would be quite long (>20). Fourteen sensi

reviewed in Balakrishnan (1998a). Five different bias
(1907). Not a

1V
Hvity

alternative

indices are
measures were recently compared by See et al
these measures were derived from an explicit description
it more difficult to evaluate them

decision-making process, making
¢ supposedly non-parametnc inc
shape of the ROC curve and other predictions

However, th lices make some testable

predictions about the
related to the effects
an and Creelman 1996) In his review o
Y concluded that a variable criterion

of base rates and pa\'nﬂu (e.g. Swets 1986a
Macmill { 10 different
sensitivity indices, Swets (1986a
assumes normal distributions with different variance

measure that
as the most viable index

(area under the normal ROC curve) w
Similarly, See et al (1997) recommended a variant of the criterion

value from signal detection theory over several supposedly non

parametric bias indices
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Figure 2. Empirical ROC curves from a vigilance
experiment with two different signal rates. When the
signal rate is low, the curve is sharply skewed with respect
to the negative diagonal (the line connecting the upper left
to the lower right corner), consistent with larger variance
in the signal distribution. According to signal detection
theory, the two curves should be identical. For Figures 2-5
are revised versions reprinted with permission from
Human Factors, 40(4). Copyright 1998 Human Factors and
Ergonomics Society. All rights reserved.

Evidence against the signal detection theory approach is
somewhat hard to come by, However, a significant part of the success
of this theory may be due to the lack of strong empirical tests of its
basic assumptions, Recently, some new methods developed by
Balakrishnan (1998a, b, 1999) have made it possible to directly
test, in an assumption-free manner, the fundamental principles of
signal detection theory and other two stage detection models,
including the assumption that (1) response biases exist, (2) the
decision process tends to be conservative and (3) the encoding
and decision-making processes are independent. To avoid the
assumptions required by d’ and b, these tests make use of some
extra information about encoding and decision-making contained
in confidence ratings data. In many respects, these new methods
are a relatively straightforward extension of the ratings paradigm
developed earlier by signal detection theorists. However, they differ
from the traditional signal detection theory methods in three ways:

o A cutoff between the “noise” and “signal” responses must be

explicitly defined on a bipolar confidence rating scale, For

example, if the rating scale has 10 values numbered from |
to 10, rating responses five and six would be labeled “lowest
confidence noise” and “lowest confidence signal” responses
respectively. The two extremes of the scale (responses 1 and
10) would represent “highest confidence noise” and “highest
confidence signal” responses respectively. Al[ematively, the
researcher may elicit first the yes—no detection response and
then a “confidence level” response. For each confidence level
in this two-response method, there is a corresponding
confidence rating in the one-response method (e.g, five levels
of confidence in the two-response method would be

equivalent to 10 rating responses on the bipolar scale in the
one-response method). For purposes of data analyses, the
confidence levels should be transformed into confidence
raungs on a single bipolar scale (e.g. confidence level 2" in
a "noise” response would become confidence rating “4” on
a 10-point bipolar scale with a cutoff between responses
five and six).

® To test the assumptions of signal detection theory, the signal
rate or some other factor presumably tied exclusively to the
decision process should be set in such a way as to induce a
response bias.

® The operators should be instructed to limit their use of the
extremes of the rating scale (i.e. the two lowest confidence
responses on a bipolar scale) to situations in which theyare
extremely uncertain. If the operator uses these Tesponses
frequently, the new measures will not misrepresent the
decision-making process, but they will be uninformative.

5. DISTRIBUTION-FREE MEASURES OF BIAS

The utility of signal detection theory as a data interpretation tool

rests on two fundamental precepts. First, the location of the
decision criterion should be strongly dependent on the base rates
or payoffs, shifting away from the “unbiased” location (i.e. the
point at which the two distributions intersect). Second, the
encoding distributions should be independent of the base rates.
Both assumptions appear to be incorrect. Figure 3 shows the
ROC curves from two different base rate conditions of a vigilance
experiment (Balakrishnan 1998b) in which the operators were
asked to discriminate between two patterns varying in overall
size. The larger of the two patterns was the “signal” and occurred
on half of the trials in one condition (Equal Base Rates) and on

Noise Signal

Equal
Base Rates

Information State

Figure 3. One possible distribution model that could' "
account for the ROC curve data in Figure 2. Decrea-'slﬂg
signal rate increases the variance of the signal distl‘fli'“ﬂ""'l
while decreasing the variance of the noise distribution.
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Figure 4. Empirical estimates of the bias test function,
U,(k), in two base rate conditions of a vigilance
experiment. The maximum of the function occurs at the
value 7 in both conditions, indicating that the detection
criterion is set at the intersection of the two encoding
distributions, regardless of the base rates. The dashed
vertical lines indicate the point at which the function
would have reached its peak if the distributional
assumptions of signal detection theory were satisfied.

only 10% of the trials in another (Low Signal Rate). Confidence
rating data were elicited using a 14-point bipolar rating scale
with a cutoff between responses seven and eight. If the encoding
distributions do not depend on the base rates, the empirical ROC
curves obtained under different signal rate conditions should fall
along a single curve. Instead, the two curves clearly map out two
very different functions. Their shapes are consistent with the
assumption that the variances of the distributions depend on the
base rates of the stimuli (Figure 4). When the signal is infrequent,
the variance of the signal distribution is relatively large compared
with the noise distribution. When the two events are equally
frequent, the variances of the distributions are equal.

Clearly, the distributions in this experiment were not
independent of the base rates. The next question is therefore
whether base rates affect both the distributions and the decision
criterion, or just the distributions. Confidence rating data can
also be used to determine whether there is any shift of the
criterion, without involving any assumptions about the shapes
of the encoding distributions. The test is based on the difference
between the cumulative relative frequency histograms of the

operator’s confidence rating responses,
U, (k) = F (k) — F(R),

where F, (k) and F, (k) are the proportions of rating responses
oise and on signal trials respectively,
bipolar scale with a
for any k associated
r any k associated

less than or equal tokonn
and the argument k is the rating value on a
cutoff at k*. If this function is decreasing
with a noise response (k £ k*), or increasing fo
with a signal response (k > k*), then the decision rule is biased
(i.e. the criterion is not set at the point where the two encoding
distributions intersect). The total proportion of these “biased
in the data, or W, is an estimate of the
proportion of times the participant makes a biased response. For
example, if the rating scale has 10 values with a cutoff between
responses five and six, and U, (k) reaches it maximum value at
rating response three, then the total proportion of four and five
responses during the experiment is the (estimated) proportion

rating responses”

of trials on which the operator’s decision differed from the
unbiased decision rule, According to signal detection theory, this
value should increase as the signal and noise base rates diverge.

If the peak of U(k) occurs at the cutoff (and hence W = 0),
the decision rule could still be biased to some degree. However,
in this case, the proportions of the two lowest confidence
responses (e.g. responses “4” and “5" ona 10-point bipolar scale)
provide upper bounds on the probability of a biased response
(e.g. the proportion of “4” responses is an upper bound on the
bias towards the noise response, and the proportion of “5
responses is an upper bound on the bias towards the signal
response). Instructions to the operator to be conservative in the
use of extreme values on the rating scale are intended to keep
this upper bound to a minimum. If it is large when W =0, then
the test will be relatively uninformative (but not misleading).

[llustrative results from the vigilance study described above
are shown in Figure 5. In these examples and in many other
experiments in our laboratory, the peak of the U, (k) function
oceurs at the cutoff value (response “77), causing W, = 0 when
the base rates were equal and when they were unequal. The
proportion of lowest confidence “noise” responses was < 0.01 in
both conditions. Thus, even when the signal occurred on only
10% of the trials, the subjects’ decision rules were not biased
towards the noise response.

The absence of bias in the decision rule implies that the
subject’s decision-making strategy is suboptimal (i.e. does not
maximize the percentage correct decisions). Suboptimality was
already implied by the supposed “conservatism” of the decision
rule that was uncovered by classical signal detection theory
studies. However, it is also possible to test for suboptimality
without making any assumptions about the structure of the
discrimination process or the encoding distributions. To do this,
the researcher calculates the proportion of correct responses
associated with each rating response given by the operator. If the
decision rule is optimal (maximizes % correct), then all of these
correct response proportions will be greater than one half,
regardless of the base rates. If any are less than one-half, then the
decision rule is suboptimal. For example, considering only the
trials of the experiment on which the operator chose rating
response “2” on the 10-point bipolar rating scale (i.e. the “noise

B Respond Noise @ Respond Signal

1 e
W [ N
*a m_BN
* *
o 08 * . " 0.8 =
I . m N *e
e 08 06
] * *
§ 0.4 04 * 0
O *
il Equal 02 Low
Base Rates Signal Rate
ik F R S B s o TR ke by ol HE

Confidence Level (k) Confidence Level (k)

Figure 5. Proportion correct conditioned on the
discrimination response and confidence level for two base
rate conditions of a vigilance experiment. Any value < 0.5
indicates that overall proportion correct could be improved
by changing the decision rule (i.c. the decision rule is
suboptimal).
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responses” given at confidence level 4), more than half of these
responses should have occurred on “noise” trials. If this is not
true, then the operator could improve his/her performance by
simply switching from a “noise” to a “signal” response whenever
s/he would normally make this “2” response,

Examples of this optimality test are shown in Figure 6. Notice
that for several of the lower confidence “signal” responses, the
subjects are more often incorrect than correct. Reversing these
“suboptimal” responses to “noise” responses “corrects” for the
suboptimality of the decision rule, providing a measure of the
performance level that the subjects could have achieved if their
decision rules were optimal. This post-hoc correction process has
some important potential applications in the workplace: in
principle, a trainer can make use of this information to give the
trainees focused feedback that will allow them to optimize their
decision-making strategies.

6. IMPLICATIONS FOR PERFORMANCE
ASSESSMENT

Unless and until some other interpretation of these new empirical
tests can be found that is consistent with the basic tenets of signal
detection theory, the legitimacy of the d’ and b analysis of
discrimination performance is seriously open to question.
Apparently, correcting for the effects of bias on the performance
of a human operator is not merely a matter of adjusting for the
value of a decision criterion, but instead involves explaining how
and why biases affect the two distributions that describe the
operator’ information states. Area under the ROC curve, &’ and
other indices associated with signal detection theory may still
provide some useful information about the operators behavior,
but it is not clear how this information should be interpreted.
Similarly, most of the other indices developed to complement or
replace the signal detection theory measures also rely heavily on
the assumption (implicitly or explicitly stated) that the two
encoding distributions are not affected by response bias.
Correcting for any suboptimality in the decision rule using
the methods described above will make it possible to compare
different operators or systems without the results being
confounded by biases in the operators decision rule. However,
this method does not control for biases in the decision Processes
that influence other aspects of behavior, including how much
information is collected before a decision is reached. If the
encoding time is operator controlled, then biases can easily mimic
the effects of sensitivity changes in signal detection theory. In
such a case, the relationship between the Operators accuracy and
response time may be the best source of information about the
contribution of biases to overall performance. Fitting a response
time model to the data is one way to quantify these effects, but of
course there is no guarantee that the assumptions of a dynamic
model will be any more accurate than those of signal detection
theory. If accuracy (hit and correct rejection rate) is increasing
and response time is decreasing under the two conditions being

compared, than it would be difficult to find any formal mode,
static or dynamic, that would not attribute this effect toa change
in sensitivity. However, if accuracy increases but response times
also increase, then the result could be attributed to biases in the
data collection process, even though d’ and other performance
indices are likely to suggest a change in sensitivity. Until more
facts are known about the effects of bias on operator performance,
strong inferences about relative sensitivity levels or the effects of
a factor on sensitivity should probably be limited to situationsin
which response accuracy and response speed are either
independent or positively covarying.
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