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1. INTRODUCTION

Many of the jobs carried out by human operators in the workplace
have a “detection” component to them. Various kinds of
watchkeeping tasks (e.g. radar monitoring, airport security,
product quality control) are some of the more obvious examples.
Other seemingly more complicated tasks, such as medical
diagnosis and personnel evaluation, can also be reduced in many
instances to a set of all-or-none decisions about the need for an
intervention of some kind. In virtually all of these cases, the
potential for human error exists, and a critical question for the
human factors specialist is whether some or all of these errors
can be attributed to operator training, system design, or other
aspects of the job that could be retooled in some way.

To answer this question, many researchers prefer to use well-
controlled experiments and objective performance indices, if they
are feasible. In addition to a rigorous measure of the difficulty of
an operators task and a numerical scale for comparing different
approaches to a problem, these indices make it possible for the
researcher to examine how factors such as attention and strategy
may interact with system design or other factors to determine
the overall performance pattern of the operator. Unfortunately,
none of the performance indices currently available to researchers
are “theory-independent.” Essentially, they are byproducts of a
relatively simple, skeletal model of the operator’s behavior in a
goal-directed setting. To be used appropriately, therefore, their
assumptions and limitations need to be properly understood.
Here we briefly review the several measures and experimental
techniques that originated with one of the most successful
performance theories in psychology, the so-called Theory of Signal
Detection (or, Signal Detection Theory; e.g. Green and Swets,
1966). Elsewhere we consider some alternatives to signal
detection theory and some recent empirical results that may

fundamentally change the way operator performance is assessed
in the future.

2. FORMAL MODELS OF DETECTION

In most real world tasks, the operator can and will make different
kinds of errors, with different consequences, and the rate at which
some kinds of errors are committed will often be inversely related
to the rate of other kinds of errors, presumably because of
attention shifts or other changes in the operator’s approach to
the task. In other words, there will be trade-offs. Changes in the
environment or system design presumably can affect the decision-
making strategy of the operator, exclusively or in addition to
their effects on the quality of the information exchange between
humans and machines. Formal models such as signal detection
theory represent attempts to provide measures of information
processing capacity that are not confounded by the operator’s
decision-making biases.

The first step in the development of such a model is to analyze
the logical structure of the operators task. With few exceptions,
human errors in the workplace are incorrect decisions about the

state of a system or real world event, or about the best possible
course of action in response to a situation. Signal detection theory
encompasses both kinds of errors by dividing the decision-making
process into two discrete, non-overlapping stages. In the first
stage, the operator collects information from the outside world,
and in the second stage the operator applies a decision-making
strategy or rule to the information state to arrive at a decision
about the nature of the circumstances and/or the best course of
action. Of course, in most workplace environments, the situations
faced by the operator are constantly changing and so this
encoding/decision-making sequence must continuously repeat
itself. The absence of any overt action on the part of the operator
at any given point in time presumably represents a decision
(conscious or otherwise) not to react on the basis of current
information about the environment.

The terms “collect information” and “apply a rule” are very
general, which is one reason why signal detection theory can be
so widely used. Any kind of information processing task will
involve information collection of some kind followed by the
selection of an appropriate action. Errors can be due to poor
information (encoding errors) or faulty decision-making (response
selection) strategies. The main objective of the signal detection
theory analysis is to separate and quantily these two kinds of
errors so that their relative frequencies and their dependence on
the properties of the system can be studied.

To do this, the theory borrows some fundamental concepts
from the statistical decision-making literature. First, the
information that reaches the decision-maker is assumed to be
ambiguous or “noisy”: the same information state can be
produced by more than one of the physical events that need
to be discriminated. The decision-maker’s problem is,
therefore, to determine which event is more likely to have
produced this information state and from this the action t'hal
is most likely to be correct. In this way, the decision-making
process is analogous to a statistical hypothesis test. T?le
operator makes an error when the information output of his/
her encoding process is sufficiently misleading, or when the
statistical decision rule is misconstrued.

Atleast in principle, this theoretical framework can be adapted
to arbitrarily complex decision-making tasks, involving many
different situations and many possible decisions that might need
to be taken (and to some extent, Thurstonian Scaling is an
example of this; Torgerson 1958). However, most of the efforts
to develop the theory have concentrated on relatively simple
decision-making tasks in which there are only two possible states
and, therefore, two possible classification responses. In this t\_VO-
choice classification (or discrimination) task, the two Poss'bli
states of the world can be arbitrarily labeled “noise” and “Sigﬂﬂl-
and there are two possible correct responses (correct signal
responses or “hits” and correct “noise” responses, or “correct
rejections”) and two kinds of errors (incorrect “signal” responses
to noise or “false alarms” and incorrect “noise” responses o Signf"ls‘
or “misses”). Signal detection theory assumes that the information
state of the operator can be represented by a point on a one-
dimensional, bipolar continuum or “decision axis.” Vﬂ]‘“‘s w
the one end of this continuum represent instances during the
experiment in which the operator is highly certain that the correct
response decision should be “noise,” and values the other end
represent high confidence “signal” responses. Somewhere between
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Figure 1. Concept of sensitivity in signal detection theory.
(upper) The presentation of a signal puts the operator into
one of seven states (9-15 on the abscissa). Noise alone
Never causes any of these information states, but instead
May cause one of a different set (1-7). In this case, the
DPemlor can (with an appropriate decision rule) perfectly
fimcri“ﬁnale between the two events. (lower) Some of the
lnf.ormaﬁo“ states (3-7) are caused by both signal and by
Noise alone (i.e. the distributions overlap), making

di i i i 1 3 = oy |
?C“mmauon errors inevitable for all possible decision
Tules,

[h / 1 ” “wr »
£S¢ Lo extremes is the “complete uncertainty” or “indifference
point,

21 Encoding Distributions and Detection
Criteria

e Presentation of a signal (or noise alone) does not always

bave the same effect on the operator, then it follows that the

::;Tﬂtion state of the operator has some univariate probabilitly

dism;ve'frequency) distribution. The difference between‘ this

il Ution of states on noise trials from its distribution on signal
Presumably depends on the physical differences between

the two events and the “sensitivity” of the operator 1o thest
differences. In fact, the degree overlap of these two distributions
would be the degree to which the noise and signal stimuli ar
confusable when they are presented equally often, This property
is illustrated in Figure 1. In the upper panel, the distributions
are completely non-overlapping. In this case, the decision-maker
can always correctly identify the stimulus because the information
states caused by the noise stimulus are never caused by the signal
stimulus, and vice versa. In the lower panel, the distributions
overlap. In this case, information states lying close to the middle
of the continuum have similar relative frequencies under the two
stimulus conditions, and perfectly equivalent relative frequencies
for one value (information state *5"). No matter which response
is assigned to information states “3" through “7,” the operators
decision will sometimes be incorrect

Using a probability distribution to describe the effect a
stimulus on the operator was standard practice long before signal
detection theory was developed. The new contribution of this
theory was in its emphasis on the sophisticated decision-making
processes that should be (and presumably are) applied by human
operators to minimize the problems caused by noisy encoding
In addition to the relative frequency of a state on signal trials (or
on noise trials), the statistical decision-maker would also consider
the relative frequencies, or “base rates,” of the signal and noise
events during the experiment, the relative costs of the two possible
errors (false alarms and misses), and the rewards for the two
possible correct decisions (hits and correct rejections). For
example, if the signal occurs very infrequently (i.e. its base rate
is low), then a state that occurs with moderate frequency on signal
trials and moderator frequency on noise trials would actually
constitute fairly strong evidence in favor of a “noise” response
Presumably, the operator combines knowledge about the
probability distributions with the base rates and payoffs to select
an appropriate “criterion” or “decision boundary” to divide the
information state continuum into two response regions, As the
base rate of the signal event increases, for example, the operator
presumabiy shifts the criterion to the left, increasing the size of
1]“3 signal rcSpO]"lbL‘ region .md hence the relative hl‘x{tlt ncy

the signal response

3. PERFORMANCE INDICES

Different assumptions about the shapes of the information state
distributions partition signal detection theory into several diflerent

detection models. The most popular of these assumes that th

his case, the

distributions are normal with equal variance. In t
distance between the means of the two distributions in standard
;

is a suitable index of the degree to whic

deviation units, or d’,
the distributions overlap ( “sensitivity
distributions at the criterion (b) is an index of preference for on
of the two responses (“response bias’)
e signal response and > 1 would indicate a bias
Je is unbiased (b= 1

_and the ratio of the two

Thus. b < 1 would indicats

a bias towards th
towards the noise response. The decision ru
when the criterion is set at the point of intersection betweer
two distributions, which occurs at the midpoint between their
means. Both d’ and b can be calculated from the hit and false

s of the operator
alanlrf‘ lrli::ediilrnbulis:‘:s are normal but have different variances
then an additional parameter is needed to fix the sensitivity :.ml'c
Unfortunately, these indices cannot be obtained from a single

1 the
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pair of hit and false alarm rates, which presumably explains why
they are not widely used, despite the fact that the equal variance
assumption is generally untenable. To fit the unequal variance
normal model to data, estimates of the hit and false alarm rates
must be obtained for several different values of the decision

criterion.

3.1. Criterion Shifts and the ROC Curve

Running the same experiment under several different base rate
or payoff conditions is one way to obtain the extra data needed
to allow for unequal variance. Another method is simply to
instruct the operator to favor one type of response over the other
to some degree. Each manipulation should cause the operator to
shift the detection criterion. The different pairs of hit and false
alarm rates can then be graphed together in a single parametric
plot (or scatterplot) called the “receiver operating characteristic”
(ROC) curve. The points on the graph are the hit rates (on the
ordinate) corresponding to each observed false alarm rate (on
the abscissa). Two examples are shown in Figure 2. For several
reasons the shape of the ROC curve is the most powerful
diagnostic from the point of view of signal detection theory. The
area under the curve, for example, increases as the sensitivity of
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Figure 2. Two possible ROC curves when the distributions
are normal with equal variance (squares) or with larger
variance in the signal distribution (diamonds). Each of the
six different points on the curve corresponds to a different
Placement of the detection criterion. Area under the
complete ROC curve (when the hit and false alarm rate are
calculated for every possible location of the detection
criterion) can be estimated by computing the area under
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Figure 3. Signal detection theory representation of
confidence rating data when there are eight possible rating
responses on a single bipolar rating scale. Small values on
the scale (e.g. “1”) are high confidence “noise” responses
and large values (e.g. “8”) are high confidence “signal”
responses. Each of the seven criteria is a possible value of
the detection criterion, making it possible to calculate
seven different points on the ROC curve from the
operator’s ratings data. For example, the proportion of
rating responses > 3 on noise trials and the proportion of
rating responses > 3 on signal trials are the false alarm and
hit rates respectively when the detection criterion is placed
at the same location as the upper bound on a “3” response.

the operator increases. Unequal variance in the distributions
causes the function to be skewed with respect to the negative
diagonal (the diagonal line connecting the upper left corner of
the graph to the lower right corner), and the direction of Fhe
skew indicates which distribution variance is larger (assuming
that the distributions are normal). Alternatively, the researcher
can plot the z-transform of the false alarm rate against the Z-
transform of the corresponding hit rate and observe the shapft of
this “z-ROC” scatterplot. If the normality assumption is satisfied,
this function will be linear with a slope equal to the ratio of the
standard deviation of the noise distribution to the standard
deviation of the signal distribution.

3.2. Ratings Method ,

Empirical studies of the shape of a ROC curve can be ume
consuming and expensive if each point of the curve must.be
estimated from a different experimental condition. An altemat‘ivf
approach that is perfectly consistent with the signal detection
theory assumptions, and at the same time considerably mor
efficient in terms of costs, is to elicit confidence rating reSPOHS;S
from the operator. According to signal detection theory, the
operator’s information is “graded” and stochastic, Var}’mg.&om
strong and reliable on some occasions to weak and uncertain 0:;
others. Asking the operators to choose one of two responsfsm
equivalent to asking them to separate their confidence states It ;
two “response bins”: “more confident signal” and “more Conﬁd?n
noise.” Asking them to also rate their confidence in their detection
Judgment is equivalent to asking them to separate their confidence
states into more than two confidence bins. The results ar:
illustrated in Figure 3. The proportion of rating responses g
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than a given value, k, on the rating scale is equal to the proportion
of times that the confidence state fell above the upper bound of
response bin k. Separating the data into signal and noise trials,
these proportions are equal to the hit and false alarm rates that
would be observed if the detection criterion were placed at the
same location as this upper bound. Thus, a number of points
along the ROC curve can be estimated from a single experimental
condition. An estimate of the area under the ROC curve is easily
obtained from these “incomplete” curves by connecting the points
and calculating the areas under each segment.

4. RECENT APPLICATIONS

Watchkeeping (or vigilance) is one of the most natural
applications of signal detection theory and probably the most
common one. In the laboratory vigilance task, subjects follow a
sequence of stimulus presentations and after each one of these
they decide whether or not to sound an alarm (detect a signal). A
great deal of effort has been extended to understand how biases
and sensitivity change over the course of the watch (e.g. Seeet
al. 1995, Parasuraman et al. 1987 for reviews). Many other
variables affecting vigilance performance have also been examined
using the signal detection theory approach. For example,
Matthews (1996) used d” and b to examine the effects of signal
rates on vigilance in high workload (fast presentation rate)
conditions. The results suggested that sensitivity declined with
time on task, and more precipitously when the signal rate was
high (i.e. when the operator must explicitly respond more often).
Response biases, on the other hand, apparently remained constant
across different signal rates. Results of this kind are not
uncommon and seem very plausible. In fact, few researchers take
the trouble to qualify their inferences about decision-making
strategies in vigilance even though they ultimately depend on
the validity of the signal detection theory indices.

Another illustration of the wide range of potential applications
of signal detection theory is its routine use as an arbitrator when
two relatively informal theories or hypotheses make different
predictions about the effects of a factor on the operators
performance. If one theory predicts that there should be no effect
of this factor or the opposite kind of effect, then the d’ measure is
typically recruited to verify that observed differences in overall
percent correct or in the hit and false alarm rates are not merely
due to effects of the factor on response bias. The direction and
size of the operators response bias are not usually specifically
predicted by theories of operator performance (response biases
are, by definition, “subject-controlled” factors) and so the d'
statistic is usually the measure of most interest. Patterns of bias,
however, can sometimes inform the researcher about variables
such as cognitive style or motivation. For example\ in a recent
study on aircraft recognition and recognition training, Goetll
(1996) looked at two memory models and their predictions abou
aircraft recognition under different learning conditions,
Recognizing whether an aircraft is or is not a member of a
predefined class (e.g. commercial versus noncommercial) is a
two-response discrimination task, making it possible to applya
signal detection theory analysis. The signal detection theory
Measures were used to estimate memory strength (sensitivity)
and the results indicated that for male subjects, there was a

difference between two different types of learning schedules on
memory strength and not merely on bias, but for the females,the
differences between the two schedules could be attributed to bias
effects alone.

Another natural application for signal detection theory has
been in the various kinds of expert decision-making problems
involved in medical and clinical diagnosis. ROC curves are used
fairly routinely in these areas to characterize the extent to which
some quantifiable property of a medical image informs the
physician about the presence or absence of a pathology
Researchers also make use of these measures to compare
experienced and inexperienced diagnosticians and to show how
new imaging technologies can combine with or replace traditional
methods of diagnosis (e.g. Jiang et al. 1999, Tsuda et al. 1999)
Quite often, new approaches to diagnosis do not increase both
the “hit” and “correct rejection” rates, making bias effects a very
important factor to consider.

In each of these examples, and in many others, some interesting
and important discoveries about human performance, including
losses of sensitivity with time on task, idiosyncratic response biases,
and other well-documented phenomena, would not be possible
without the benefit of a formal measurement system. However,
these discoveries are only “conditional” statements of fact because
of their dependence on the specific assumptions of signal detection
theory. Other interpretations of the data are possible, and
occasionally other indices are adopted in addition to or in place of
the signal detection theory measures. In the next chapter, we look
at the evidence in support of signal detection theory and then
discuss some of the alternatives and their motivations

ACKNOWLEDGEMENTS
NASA Dryden Flight Research Center Grant NCC2-374
supported the authors.

REFERENCES

GOETTL. B.P, 1996, The spacing effect in aircralt recognition. Human
Factors, 38, 34-49.

GREEN, D.M. and SWETS, J.A., 1966, Signal Detection Theory and
Psychophysics (New York: Wiley; repr. Huntington: Krieger, 1974)

JIANG, Y., NISHIKAWA, RM., SCHMIDT, RA., METZ, C.E., GIGER
M.L and DOI, K., 1999, Improving breast cancer diagnosis with
compuler-alded diagnosis Academic Radiology, 6, 22-33

MATTHEWS, G., 1996, Signal probability effects on high-workload
vigilance tasks. Psychonomic Bulletin and Review, 3, 339-43

PARASURAMAN, R, WARM, ].5. and DEMBER, WN,, 1987, Vigilance

and utility. In LS. Mark, .5, Warm and R.L. Huston (eds)

{axonomy
h (New York: Springer)

Ergonomics and Human Factors: Recent Researc

SEE, J.E., HOWE, 5.R., WARM, J.S. and DEMBER, WN
w2 nt in vigilance. Psychological Bulletin

, 1995, Meta

analysis of the sensitivity decreme:
117, 230-49.

TORGERSON, W5.
Wiley). ‘
TSUDA. K., YU, KK., COAKLEY, EV,, SRIVASTAY, 5 K., SCHEIDL ER,
J.E.and HRICAK, H., 1999, Detection of extracapsular extension of
: ppression endorectal MRI Journal of

. 1958, Theory and Methods of Scaling (New York

prostate cancer. role of fat su
Compuier Assisted Tomography, 23, 74-8.




